
02 — Getting Oriented
Kieran Healy

January 23, 2024

Motivation

Technical computing is often

frustrating

What is this?

Two Revolutions in

Computing

What everyday computing is now

Touch-based user interface

Foregrounds a single

application

Dislikes multi-tasking

Hides the file system

“Laundry Pile” user model of

where things are stored

Where technical computing lives

Windows and pointers.

Multi-tasking, multiple windows.

Exposes and leverages the file system.

Many specialized tools in concert.

Underneath, it’s the 1970s, UNIX, and

the command-line.

Cabinets, drawers, and files model of

where things are stored

Where technical computing lives

This toolset is by now really good!

Free! Open! Powerful!

Friendly communities! Lots of

information! Many resources!

But: grounded in a UI paradigm that is

increasingly far away from the

everyday use of computing devices

So why do we use this stuff?

“Office” vs “Engineering” approaches

What is “real” in your project?

What is the final output?

How is it produced?

How are changes managed?

Different Answers

Office model
Formatted documents are real.

Intermediate outputs are cut and pasted into

documents.

Changes are tracked inside files.

Final output is often in the same format you’ve

been working in, e.g. a Word file, or a PDF.

Engineering model
Plain-text files are real.

Intermediate outputs are produced via code,

often inside documents.

Changes are tracked outside files, at the level

of a project.

Final outputs are assembled programmatically

and converted to some desired format.

Different strengths and weaknesses

Office model
Everyone knows Word, Excel, or

Google Docs.

“Track changes” is powerful and

easy.

Hm, I can’t remember how I

made this figure

Where did this table of results

come from?

Paper_edits_FINAL_kh-
1.docx

Engineering model
Plain text is highly portable.

Push button, recreate analysis.

JFC Why can’t I do this simple

thing?

Object of type
'closure' is not

subsettable

Each approach
generates

solutions to its
own problems

The File System

The traditional analog

The problem is, you probably have

never have actually used one of

these!

Illustration: Shelley Powers et al. Unix Power Tools, 3rd ed. (Sebastopol, CA: O’Reilly Media, 2002), 21.

The file cabinet!

The file cabinet!

Index cards

Index cards

Automating information processing

Automating information processing

Automating information processing

Hollerith machines

Hollerith Machines

Hollerith machines

Hollerith machines

Hollerith Operators

Hollerith Operators

IBM punch cards

IBM punch cards

Big Iron

Storage

Storage

Input/Output

A late-model teletype (TTY) machine

Input/Output

The DEC VT-100 Terminal

Input/Output

Back to the file system

File system hierarchy

Illustration: Powers et al. Unix Power Tools, 23.

Stepping back

Your computer stores files and does stuff, or “runs commands”

Files are stored in a large hierarchy of folders

The Finder or Window Manager or File Manager is a visual metaphor for

representing this hierarchy of files and for running commands on them.

But you can also do these things via text-based commands delivered from

a prompt, console, or “command line”.

Software like RStudio has a lot of these “old school” computing elements

Getting to know R and

RStudio

We want to draw
graphs

reproducibly

Abstraction in software

Less

Easy things are awkward

Hard things are straightforward

Really hard things are possible

Abstraction in software

Less

Easy things are awkward

Hard things are straightforward

Really hard things are possible

More

Easy things are trivial

Hard things are awkward

Really hard things are impossible

Compare

D3

Grid

ggplot

Stata

Excel

The RStudio IDE

An IDE for R

An IDE for Meals

RStudio at startup

RStudio schematic overview

RStudio schematic overview

Think in terms of Data +
Transformations, written out as

code, rather than a series of point-
and-click steps

Our starting data + our code is
what’s “real” in our projects, not the
final output or any intermediate

objects

RStudio at startup

RStudio at startup

RStudio at startup

RStudio at startup

RStudio at startup

Use RMarkdown to produce

and reproduce work

Where we want to end up

PDF out

Where we want to end up

HTML out

Where we want to end up

Word out

How to get there?

We could write an R script with some notes inside, using it to create some

figures and tables, paste them into our document.

This will work, but we can do better.

We can make this …

… by writing this

The code gets replaced by its output

Markdown document

Markdown document annotated

This approach has its limitations, but it’s very useful and has many benefits.

Basic markdown summary

Desired style Use the following Markdown annotation

Heading 1 # Heading 1

Heading 2 �� Heading 2

Heading 3 ��� Heading 3 (Actual heading styles will vary.)

Paragraph Just start typing

Bold ��Bold��

Italic *Italic*

Images [Alternate text for image](path/image.jpg)

[Link text](https:�����.visualizingsociety.com/)

Unordered Lists

- First - First

- Second. - Second

- Third - Third

Ordered Lists

1. First 1. First

2. Second. 2. Second

3. Third 3. Third

Footnote.¹ Footnote[^notelabel]

¹The note’s content. [^notelabel] The note's content.

Hyperlinks

https://www.visualizingsociety.com/

The right frame of mind

This is like learning how to drive a car, or how to cook in a kitchen … or learning to speak a language.

After some orientation to what’s where, you will learn best by doing.

Software is a pain, but you won’t crash the car or burn your house down.

TYPE OUT

YOUR CODE

BY HAND

Samuel Beckett

GETTING

ORIENTED

Loading the tidyverse libraries

The tidyverse has several components.

We’ll return to this message about Conflicts later.

Again, the code and messages you see here is actual R output, produced at the same time as the slide.

library(tidyverse)

Tidyverse components

library(tidyverse)

Loading tidyverse: ggplot2

Loading tidyverse: tibble

Loading tidyverse: tidyr

Loading tidyverse: readr

Loading tidyverse: purrr

Loading tidyverse: dplyr

Call the package and …

�� Draw graphs

�� Nicer data tables

�� Tidy your data

�� Get data into R

�� Fancy Iteration

�� Action verbs for tables

What R looks like

Code you can type and run:

Output:

This is equivalent to running the code above, typing my_numbers at the

console, and hitting enter.

�� Inside code chunks, lines beginning with a # character are comments
�� Comments are ignored by R

my_numbers �� c(1, 1, 2, 4, 1, 3, 1, 5) # Anything after a # character is ignored as well

my_numbers

[1] 1 1 2 4 1 3 1 5

What R looks like

By convention, code output in documents is prefixed by ��

Also by convention, outputting vectors, etc, gets a counter keeping track

of the number of elements. For example,

letters

 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
[20] "t" "u" "v" "w" "x" "y" "z"

Some things to know about R

0. It’s a calculator

Arithmetic

(31 * 12) / 2^4

[1] 23.25

sqrt(25)

[1] 5

log(100)

[1] 4.60517

log10(100)

[1] 2

0. It’s a calculator

Arithmetic Logic

(31 * 12) / 2^4

[1] 23.25

sqrt(25)

[1] 5

log(100)

[1] 4.60517

log10(100)

[1] 2

4 < 10

[1] TRUE

4 > 2 & 1 > 0.5 # The "&" means "and"

[1] TRUE

4 < 2 | 1 > 0.5 # The "|" means "or"

[1] TRUE

4 < 2 | 1 < 0.5

[1] FALSE

Boolean and Logical operators

Logical equality and inequality (yielding a TRUE or FALSE result) is done

with �� and ��. Other logical operators include <, >, ��, ��, and ! for

negation.

�� A logical test
2 �� 2 # Write `=` twice

[1] TRUE

�� This will cause an error, because R will think you are trying to assign a value
2 = 2

�� Error in 2 = 2 : invalid (do_set) left-hand side to assignment

3 �� 7 # Write `!` and then `=` to make `��`

[1] TRUE

1. Everything in R has a name

my_numbers # We created this a few minutes ago

[1] 1 1 2 4 1 3 1 5

letters # This one is built-in

 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
[20] "t" "u" "v" "w" "x" "y" "z"

pi # Also built-in

[1] 3.141593

Some names are forbidden

Or it’s a really bad idea to try to use them

TRUE
FALSE
Inf
NaN
NA
NULL

for
if
while
break
function

2. Everything is an object

There are a few built-in objects:

letters

 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
[20] "t" "u" "v" "w" "x" "y" "z"

pi

[1] 3.141593

LETTERS

 [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S"
[20] "T" "U" "V" "W" "X" "Y" "Z"

3. You can create objects

In fact, this is mostly what we will be doing.

Objects are created by assigning a thing to a name:

The c() function combines or concatenates things

�� name��� gets ��� this stuff
my_numbers �� c(1, 2, 3, 1, 3, 5, 25, 10)

�� name ��� gets ��� the output of the function `c()`
your_numbers �� c(5, 31, 71, 1, 3, 21, 6, 52)

The assignment operator

The assignment operator performs the action of creating objects

Use a keyboard shortcut to write it:

Press option and - on a Mac

Press alt and - on Windows

Assignment with =

You can use = as well as �� for assignment.

On the other hand, = has a different meaning when used in functions.

I’m going to use �� for assignment throughout.

Be consistent either way.

my_numbers = c(1, 2, 3, 1, 3, 5, 25)

my_numbers

[1] 1 2 3 1 3 5 25

4. You do things with functions

�� this object��� gets ��� the output of this function
my_numbers �� c(1, 2, 3, 1, 3, 5, 25, 10)

your_numbers �� c(5, 31, 71, 1, 3, 21, 6, 52)

my_numbers

[1] 1 2 3 1 3 5 25 10

4. You do things with functions

Functions can be identified by the parentheses after their names.

my_numbers

[1] 1 2 3 1 3 5 25 10

�� If you run this you'll get an error
mean()

What functions usually do

They take inputs to arguments

They perform actions

They produce, or return, outputs

mean(x = my_numbers)

What functions usually do

They take inputs to arguments

They perform actions

They produce, or return, outputs

mean(x = my_numbers)

[1] 6.25

What functions usually do

�� Get the mean of what? Of x.
�� You need to tell the function what x is
mean(x = my_numbers)

[1] 6.25

mean(x = your_numbers)

[1] 23.75

What functions usually do

If you don’t name the arguments, R assumes you are providing them in

the order the function expects.

mean(your_numbers)

[1] 23.75

What functions usually do

What arguments? Which order? Read the function’s help page

How to read an R help page?

help(mean)

�� quicker
?mean

What functions usually do

Arguments often tell the function what to do in specific circumstances

Or select from one of several options

missing_numbers �� c(1:10, NA, 20, 32, 50, 104, 32, 147, 99, NA, 45)

mean(missing_numbers)

[1] NA

mean(missing_numbers, na.rm = TRUE)

[1] 32.44444

�� Look at ?mean to see what `trim` does
mean(missing_numbers, na.rm = TRUE, trim = 0.1)

[1] 27.25

What functions usually do

There are all kinds of functions. They return different things.

summary(my_numbers)

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.00 1.75 3.00 6.25 6.25 25.00

What functions usually do

You can assign the output of a function to a name, which turns it into an

object. (Otherwise it’ll send its output to the console.)

my_summary �� summary(my_numbers)

my_summary

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.00 1.75 3.00 6.25 6.25 25.00

What functions usually do

Objects hang around in your work environment until they are overwritten

by you, or are deleted.

�� rm() function removes objects
rm(my_summary)

my_summary

�� Error: object 'my_summary' not found

Functions can be nested

Nested functions are evaluated from the inside out.

c(1:20)

 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

mean(c(1:20))

[1] 10.5

summary(mean(c(1:20)))

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 10.5 10.5 10.5 10.5 10.5 10.5

names(summary(mean(c(1:20))))

[1] "Min." "1st Qu." "Median" "Mean" "3rd Qu." "Max."

length(names(summary(mean(c(1:20)))))

[1] 6

Use the pipe operator: |>

Instead of deeply nesting functions in parentheses, we can use the pipe

operator:

Read this operator as “and then”

c(1:20) �� mean() �� summary() �� names() �� length()

[1] 6

Use the pipe operator: |>

Better, vertical space is free in R:

c(1:20) ��
 mean() ��
 summary() ��
 names() ��
 length()

[1] 6

Pipelines make code more readable

Not great, Bob:

Notice how the first thing you read is the last operation performed.

 serve(stir(pour_in_pan(whisk(crack_eggs(get_from_fridge(eggs), into = "bowl"), len = 40), temp = "med-high")))

Pipelines make code more readable

We can use vertical space and indents, but it’s really not much better:

serve(
 stir(
 pour_in_pan(
 whisk(
 crack_eggs(
 get_from_fridge(eggs),
 into = "bowl"),
 len = 40),
 temp = "med-high")
)
)

Pipelines make code more readable

Much nicer:

We’ll still use nested parentheses quite a bit, often in the context of a function working inside a pipeline. But it’s

good not to have too many levels of nesting.

eggs ��
 get_from_fridge() ��
 crack_eggs(into = "bowl") ��
 whisk(len = 40) ��
 pour_in_pan(temp = "med-high") ��
 stir() ��
 serve()

The other pipe: %>%

The Base R pipe operator, �� is a relatively recent addition to R.

Piping operations were originally introduced in a package called called

magrittr, where it took the form %>%

The other pipe: %>%

The Base R pipe operator, �� is a relatively recent addition to R.

Piping operations were originally introduced in a package called called

magrittr, where it took the form %>%

It’s been so successful, a version of it has been incorporated into Base R.

For our puposes, they’re the same.

Functions are bundled into packages

Packages are loaded into your working environment using the

library() function:

�� A package containing a dataset rather than functions
library(gapminder)

gapminder

A tibble: 1,704 × 6
 country continent year lifeExp pop gdpPercap
 <fct> <fct> <int> <dbl> <int> <dbl>
 1 Afghanistan Asia 1952 28.8 8425333 779.
 2 Afghanistan Asia 1957 30.3 9240934 821.
 3 Afghanistan Asia 1962 32.0 10267083 853.
 4 Afghanistan Asia 1967 34.0 11537966 836.
 5 Afghanistan Asia 1972 36.1 13079460 740.
 6 Afghanistan Asia 1977 38.4 14880372 786.
 7 Afghanistan Asia 1982 39.9 12881816 978.
 8 Afghanistan Asia 1987 40.8 13867957 852.
 9 Afghanistan Asia 1992 41.7 16317921 649.
10 Afghanistan Asia 1997 41.8 22227415 635.
ℹ 1,694 more rows

Functions are bundled into packages

You need only install a package once (and occasionally update it):

�� Do at least once for each package. Once done, not needed each time.
install.packages("palmerpenguins", repos = "http:��cran.rstudio.com")

�� Needed sometimes, especially after an R major version upgrade.
update.packages(repos = "http:��cran.rstudio.com")

Functions are bundled into packages

But you must load the package in each R session before you can access its

contents:

�� To load a package, usually at the start of your RMarkdown document or script file
library(palmerpenguins)
penguins

A tibble: 344 × 8
 species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
 <fct> <fct> <dbl> <dbl> <int> <int>
 1 Adelie Torgersen 39.1 18.7 181 3750
 2 Adelie Torgersen 39.5 17.4 186 3800
 3 Adelie Torgersen 40.3 18 195 3250
 4 Adelie Torgersen NA NA NA NA
 5 Adelie Torgersen 36.7 19.3 193 3450
 6 Adelie Torgersen 39.3 20.6 190 3650
 7 Adelie Torgersen 38.9 17.8 181 3625
 8 Adelie Torgersen 39.2 19.6 195 4675
 9 Adelie Torgersen 34.1 18.1 193 3475
10 Adelie Torgersen 42 20.2 190 4250
ℹ 334 more rows
ℹ 2 more variables: sex <fct>, year <int>

Let’s Go!

Like before

library(tidyverse)
library(gapminder)

p �� ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp))

p + geom_point()

What we did

Load the packages we need: tidyverse and gapminder

library(tidyverse)

library(gapminder)

What we did

New object named p gets the output of the ggplot() function, given

these arguments

Notice how one of the arguments, mapping, is itself taking the output of

a function named aes()

p �� ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp))

What we did

Show me the output of the p object and the geom_point() function.

The + here acts just like the �� pipe, but for ggplot functions only. (This is

an accident of history.)

p + geom_point()

And what is R doing?

R objects are just lists of stuff to use or things to do

Objects are like Bento Boxes

The p object

Peek in with the object inspector

Peek in with the object inspector

Core concepts: mappings + geoms

The core idea, which we’ll focus on more formally next week, is that we

have data, arranged in columns, that we want to represent visually on

some sort of plot.

That means we need a mapping — a link, a connection, a representation —

between things in our table and stuff we can draw. That is what the

mapping argument is for.

And we need a geom — a kind of plot, a particular sort of graph — that we

draw with that.

Practical examples

Let’s try some live examples …How might we improve or extend this

graph based on the data we have? Or how might we look at it differently?

```

p + geom_point()


