04 – How ggplot Thinks

Kieran Healy

January 31, 2024

Load our libraries

library(here) # manage file paths library(socviz) # data and some useful functions library(tidyverse) # your friend and mine library(gapminder) # some data

Nearly done with the scaffolding

- **V** Thought about elements of visualization
- Gotten oriented to R and RStudio
- Knitted a document
- Written a bit of ggplot code

Nearly done with the scaffolding

- **V** Thought about elements of visualization
- Gotten oriented to R and RStudio
- Knitted a document
- Written a bit of ggplot code
- Get my data in to R
- Make a plot with it

Reviewing the Problem Sets

Windows and Zip Files

Rendering a Project and watching it update Strategies for debugging your code: a chunk at a time, a step at a time

In the background

Things the columns in our table can be:

Words naming unordered categories: e.g. Asia, Europe, America

Words naming *ordered* categories: e.g. Elementary, High School, College; *or* Strongly Agree, Agree, Neutral, Disagree, Strongly Disagree; etc.

Numbers that can take on just a quite limited range of (integer) values: e.g. number of children; years of schooling; number of people in the household. These are very close to categorical variables as well, but are more often counts.

Numbers that can take on many values in some range, depending on how precisely we measure them: e.g. distance traveled to work; height in centimeters; number of computers sold per quarter; population size

Truly "continuous" measures are comparatively rare in social science; most often encountered with aggregate quantities rather than individual ones. (Even things like "income" end up being measured with e.g. 10 categories.)

Feed ggplot tidy data

FEED ME

Tidy Data

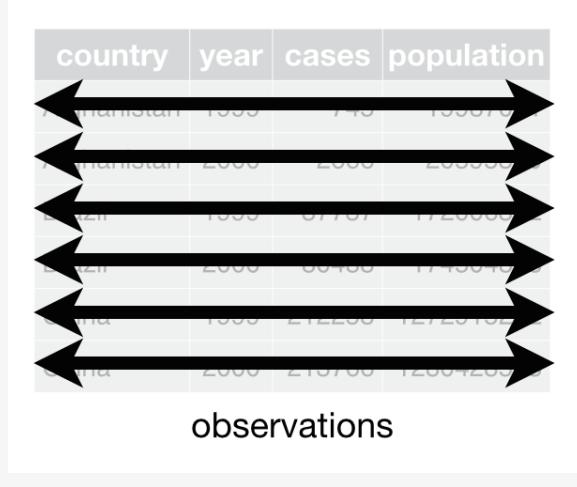
What is tidy data?

gdp	lifexp	рор	continent
340	65	31	Euro
227	51	200	Amer
909	81	80	Euro
126	40	20	Asia

Tidy data

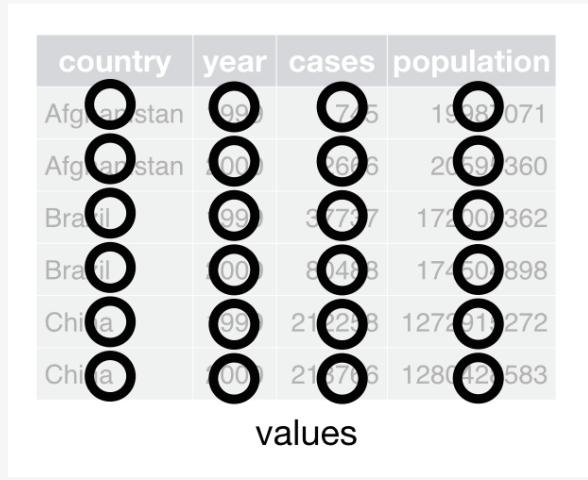
What is tidy data?

gdp	lifexp	рор	continent
340	65	31	Euro
227	51	200	Amer
909	81	80	Euro
126	40	20	Asia


Tidy data is in *long* format

Every column is a single variable

country	year	cases	population
Afghanstan	1.00	45	18:07071
Afghanistan	2000	2666	20
Brazil	1999	31737	172006362
Brazil	2000	80488	174:04898
China	1999	212258	1272915272
Chin	20	21 66	1280 8583
·	var	iables	·


Grolemund & Wickham

Every row is a single observation

Grolemund & Wickham

Every cell is a single value

Grolemund & Wickham

Get your data into long format

Very, *very* often, the solution to some data-wrangling or data visualization problem in a Tidyverse-focused workflow is:

Get your data into long format

Very, *very* often, the solution to some data-wrangling or data visualization problem in a Tidyverse-focused workflow is:

First, get the data into long format Then do the thing you want.

Untidy data exists for good reasons

Storing and printing data in long format entails a lot of *repetition*:

library(palmerpenguins)
penguins ▷
 group_by(species, island, year) ▷
 summarize(bill = round(mean(bill_length_mm, na.rm = TRUE),2)) ▷
 knitr::kable()

species	island	year	bill		
Adelie	Biscoe	2007	38.32		
Adelie	Biscoe	2008	38.70		
Adelie	Biscoe	2009	39.69		
Adelie	Dream	2007	39.10		
Adelie	Dream	2008	38.19		
Adelie	Dream	2009	38.15		
Adelie	Torgersen	2007	38.80		
Adelie	Torgersen	2008	38.77		
Adelie	Torgersen	2009	39.31		
Chinstrap	Dream	2007	48.72		
Chinstrap	Dream	2008	48.70		
Chinetran	Dream	2009	10.05		

Untidy data exists for good reasons

A wide format is *easier* and *more efficient* to read in print:

```
penguins ▷
group_by(species, island, year) ▷
summarize(bill = round(mean(bill_length_mm, na.rm = TRUE), 2)) ▷
pivot_wider(names_from = year, values_from = bill) ▷
knitr::kable()
```

species	island	2007	2008	2009
Adelie	Biscoe	38.32	38.70	39.69
Adelie	Dream	39.10	38.19	38.15
Adelie	Torgersen	38.80	38.77	39.31
Chinstrap	Dream	48.72	48.70	49.05
Gentoo	Biscoe	47.01	46.94	48.50

Untidy data exists for good reasons

A wide format is *easier* and *more efficient* to read in print:

```
penguins ▷
group_by(species, year, island) ▷
summarize(bill = round(mean(bill_length_mm, na.rm = TRUE), 2)) ▷
pivot_wider(names_from = island, values_from = bill) ▷
knitr::kable()
```

species	year	Biscoe	Dream	Torgersen
Adelie	2007	38.32	39.10	38.80
Adelie	2008	38.70	38.19	38.77
Adelie	2009	39.69	38.15	39.31
Chinstrap	2007	NA	48.72	NA
Chinstrap	2008	NA	48.70	NA
Chinstrap	2009	NA	49.05	NA
Gentoo	2007	47.01	NA	NA
Gentoo	2008	46.94	NA	NA
Gentoo	2009	48.50	NA	NA

But also for less good reasons

А	В	С	D	E	F	G	Н	1	J	К	L	м	N 4	► P	Q
State	CD#	2018 Cook PVI Score	2018 Winner	Party	Dem Votes	GOP Votes	Other Votes	Dem %	GOP %	Other %	Dem Margin	2016 Clinton Margin	Swing vs. 2016 Prez	Raw Votes vs. 2016	Final?
New House B	reakdow	n: <mark>235D</mark> , 1 <mark>99</mark> I	R, 1 Not Certified	D	60,619,428	50,896,244	1,978,795	53.4%	44.8%	1.7%	8.6%	2.1%	6.5%	83.3%	
Compiled by:	David Wa	sserman & All	ly Flinn, Cook Political Re	port. @Red	istrict/@Cook	Political. Italic	s denotes fre	eshman, B	old denot	tes party cl	nange.				
Alabama	1	R+15	Bradley Byrne	R	89,226	153,228	163	36.8%	63.2%	0.1%	-26.4%	-29.2%	2.8%	79.3%	х
Alabama	2	R+16	Martha Roby	R	86,931	138,879	420	38.4%	61.4%	0.2%	-23.0%	-31.7%	8.7%	78.7%	х
Alabama	3	R+16	Mike Rogers	R	83,996	147,770	149	36.2%	63.7%	0.1%	-27.5%	-33.0%	5.5%	79.6%	х
Alabama	4	R+30	Robert Aderholt	R	46,492	184,255	222	20.1%	79.8%	0.1%	-59.6%	-62.5%	2.9%	78.9%	х
Alabama	5	R+18	Mo Brooks	R	101,388	159,063	222	38.9%	61.0%	0.1%	-22.1%	-32.9%	10.8%	82.8%	х
Alabama	6	R+26	Gary Palmer	R	85,644	192,542	142	30.8%	69.2%	0.1%	-38.4%	-43.8%	5.4%	82.8%	х
Alabama	7	D+20	Terri Sewell	D	185,010	0	4,153	97.8%	0.0%	2.2%	97.8%	41.2%	N/A	64.2%	х
Alaska	AL	R+9	Don Young	R	131,199	149,779	1,188	46.5%	53.1%	0.4%	-6.6%	-14.7%	8.1%	88.6%	х
Arizona	1	R+2	Tom O'Halleran	D	143,240	122,784	65	53.8%	46.1%	0.0%	7.7%	-1.1%	8.8%	92.0%	х
Arizona	2	R+1	Ann Kirkpatrick	D	161,000	133,102	50	54.7%	45.2%	0.0%	9.5%	4.8%	4.7%	91.5%	х
Arizona	3	D+13	Raul Grijalva	D	114,650	64,868	0	63.9%	36.1%	0.0%	27.7%	29.5%	-1.8%	84.8%	х
Arizona	4	R+21	Paul Gosar	R	84,521	188,842	3,672	30.5%	68.2%	1.3%	-37.7%	-39.4%	1.7%	91.1%	х
Arizona	5	R+15	Andy Biggs	R	127,027	186,037	0	40.6%	59.4%	0.0%	-18.8%	-20.5%	1.7%	91.7%	х
Arizona	6	R+9	David Schweikert	R	140,559	173,140	0	44.8%	55.2%	0.0%	-10.4%	-9.8%	-0.6%	91.2%	х
Arizona	7	D+23	Ruben Gallego	D	113,044	301	18,706	85.6%	0.2%	14.2%	85.4%	48.3%	N/A	79.0%	х
Arizona	8	R+13	Debbie Lesko	R	135,569	168,835	13	44.5%	55.5%	0.0%	-10.9%	-20.8%	9.9%	91.5%	х
Arizona	9	D+4	Greg Stanton	D	159,583	101,662	0	61.1%	38.9%	0.0%	22.2%	15.9%	6.3%	90.0%	х
Arkansas	1	R+17	Rick Crawford	R	57,907	138,757	4,581	28.8%	68.9%	2.3%	-40.2%	-34.8%	-5.4%	77.2%	х
Arkansas	2	R+7	French Hill	R	116,135	132,125	5,193	45.8%	52.1%	2.0%	-6.3%	-10.7%	4.4%	82.6%	х
Arkansas	3	R+19	Steve Womack	R	74,952	148,717	6,039	32.6%	64.7%	2.6%	-32.1%	-31.4%	-0.7%	78.6%	х
Arkansas	4	R+17	Bruce Westerman	R	63,984	136,740	4,168	31.2%	66.7%	2.0%	-35.5%	-32.8%	-2.7%	75.7%	х
California	1	R+11	Doug LaMalfa	R	131,506	160,006	0	45.1%	54.9%	0.0%	-9.8%	-19.4%	9.6%	91.6%	
California	2	D+22	Jared Huffman	D	243,051	72,541	0	77.0%	23.0%	0.0%	54.0%	45.2%	8.8%	90.5%	
California	3	D+5	John Garamendi	D	132,983	96,106	0	58.0%	42.0%	0.0%	16.1%	12.5%	3.6%	86.8%	
California	4	R+10	Tom McClintock	R	156,253	184,401	0	45.9%	54.1%	0.0%	-8.3%	-14.5%	6.2%	94.6%	
California	5	D+21	Mike Thompson	D	203,012	0	53,836	79.0%	0.0%	21.0%	79.0%	44.6%	N/A	83.8%	
California	6	D+21	Doris Matsui	D	201,939	0	0	100.0%	0.0%	0.0%	100.0%	44.0%	N/A	81.4%	
California	7	D+3	Ami Bera	D	155,016	126,601	0	55.0%	45.0%	0.0%	10.1%	11.2%	-1.1%	91.0%	
California	8	R+9	Paul Cook	R	0	170,785	0	0.0%	100.0%	0.0%	-100.0%	-15.1%	N/A	73.3%	
California	9	D+8	Jerry McNerney	D	113,240	87,263	0	56.5%	43.5%	0.0%	13.0%	18.2%	-5.2%	82.4%	

Spot the untidiness

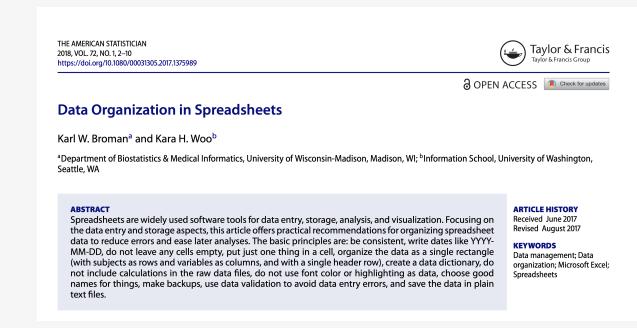
But also for less good reasons

А	В	с	D	E	F	G	н	1	J	к	L	м	N 4	▶ P	Q
State	CD#	2018 Cook	2018 Winner	Party	Dem Votes	GOP Votes	Other Votes	Dem %	GOP %		Dem Margin	2016 Clinton Margin	Swing vs. 2016 Prez	Raw Votes vs. 2016	Final?
New House E	Breakdow	n: 235D, 199	R, 1 Not Certified	D		50,896,244	1,978,795	53.4%	44.8%	1.7%	8.6%	2.1%	6.5%	83.3%	
			y Flinn, Cook Political Re	port. @Red			s denotes fro	eshman, E	old denot	es party cl	nange.				
Alabama	1	R+15	Bradley Byrne	R	89,226	153,228	163	36.8%	63.2%	0.1%	-26.4%	-29.2%	2.8%	79.3%	x
Alabama	2	R+16	Martha Roby	R	86,931	138.879	420	38.4%	61.4%	0.2%	-23.0%	-31.7%	8.7%	78.7%	x
Alabama	3	R+16	Mike Rogers	R	83,996	147,770	149	36.2%	63.7%	0.1%	-27.5%	-33.0%	5.5%	79.6%	x
Alabama	4	R+30	Robert Aderholt	B	46,492	184.255	222	20.1%	79.8%	0.1%	-59.6%	-62.5%	2.9%	78.9%	x
Alabama	5	R+18	Mo Brooks	B	101.388	159.063	222	38.9%	61.0%	0.1%	-22.1%	-32.9%	10.8%	82.8%	x
Alabama	6	R+26	Gary Palmer	R	85.644	192,542	142	30.8%	69.2%	0.1%	-38.4%	-43.8%	5.4%	82.8%	x
Alabama	7	D+20	Terri Sewell	D	185.010	0	4.153	97.8%	0.0%	2.2%	97.8%	41.2%	N/A	64.2%	x
Alaska	AL	R+9	Don Young	B	131,199	149,779	1,188	46.5%	53.1%	0.4%	-6.6%	-14.7%	8.1%	88.6%	x
Arizona	1	R+2	Tom O'Halleran	D	143,240	122,784	65	53.8%	46.1%	0.0%	7.7%	-1.1%	8.8%	92.0%	x
Arizona	2	R+1	Ann Kirkpatrick	D	161.000	133,102	50	54.7%	45.2%	0.0%	9.5%	4.8%	4.7%	91.5%	x
Arizona	3	D+13	Raul Grijalva	D	114,650	64,868	0	63.9%	36.1%	0.0%	27.7%	29.5%	-1.8%	84.8%	x
Arizona	4	R+21	Paul Gosar	R	84,521	188.842	3.672	30.5%	68.2%	1.3%	-37.7%	-39.4%	1.7%	91.1%	x
Arizona	5	R+15	Andy Biggs	R	127.027	186.037	0	40.6%	59.4%	0.0%	-18.8%	-20.5%	1.7%	91.7%	x
Arizona	6	R+9	David Schweikert	R	140.559	173,140	0	44.8%	55.2%	0.0%	-10.4%	-9.8%	-0.6%	91.2%	x
Arizona	7	D+23	Ruben Gallego	D	113.044	301	18,706	85.6%	0.2%	14.2%	85.4%	48.3%	N/A	79.0%	x
Arizona	8	R+13	Debbie Lesko	R	135,569	168,835	13	44.5%	55.5%	0.0%	-10.9%	-20.8%	9.9%	91.5%	x
Arizona	9	D+4	Greg Stanton	D	159,583	101,662	0	61.1%	38.9%	0.0%	22.2%	15.9%	6.3%	90.0%	x
Arkansas	1	R+17	Rick Crawford	R	57,907	138,757	4,581	28.8%	68.9%	2.3%	-40.2%	-34.8%	-5.4%	77.2%	x
Arkansas	2	R+7	French Hill	R	116,135	132,125	5,193	45.8%	52.1%	2.0%	-6.3%	-10.7%	4.4%	82.6%	x
Arkansas	3	R+19	Steve Womack	R	74,952	148,717	6,039	32.6%	64.7%	2.6%	-32.1%	-31.4%	-0.7%	78.6%	x
Arkansas	4	R+17	Bruce Westerman	R	63,984	136,740	4,168	31.2%	66.7%	2.0%	-35.5%	-32.8%	-2.7%	75.7%	x
California	1	R+11	Doug LaMalfa	R	131,506	160,006	0	45.1%	54.9%	0.0%	-9.8%	-19.4%	9.6%	91.6%	
California	2	D+22	Jared Huffman	D	243,051	72,541	0	77.0%	23.0%	0.0%	54.0%	45.2%	8.8%	90.5%	
California	3	D+5	John Garamendi	D	132,983	96,106	0	58.0%	42.0%	0.0%	16.1%	12.5%	3.6%	86.8%	
California	4	R+10	Tom McClintock	R	156,253	184,401	0	45.9%	54.1%	0.0%	-8.3%	-14.5%	6.2%	94.6%	
California	5	D+21	Mike Thompson	D	203,012	0	53,836	79.0%	0.0%	21.0%	79.0%	44.6%	N/A	83.8%	
California	6	D+21	Doris Matsui	D	201,939	0	0	100.0%	0.0%	0.0%	100.0%	44.0%	N/A	81.4%	
California	7	D+3	Ami Bera	D	155,016	126,601	0	55.0%	45.0%	0.0%	10.1%	11.2%	-1.1%	91.0%	
California	8	R+9	Paul Cook	R	0	170,785	0	0.0%	100.0%	0.0%	-100.0%	-15.1%	N/A	73.3%	
California	9	D+8	Jerry McNerney	D	113,240	87,263	0	56.5%	43.5%	0.0%	13.0%	18.2%	-5.2%	82.4%	

🥺 More than one header row

Wixed data types in some columns

Color and typography used to encode variables and their values


Spot the untidiness

Fix it before you import it

Prevention is better than cure!

An excellent article by Karl Broman and Kara Woo:

Broman KW, Woo KH (2018) "Data Organization in Spreadsheets"." The American Statistician 78:2–10

Data organization in spreadsheets

The most common tidyr operation

Pivoting from wide to long:

e	lu											
#	# A tibble: 366 × 11 age sex year total elem4 elem8 hs3 hs4 coll3 coll4 median											
	age	sex	year	total	elem4	elem8	hs3	hs4	coll3	coll4	median	
	<chr></chr>	<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
1	25-34	Male	2016	21845	116	468	1427	6386	6015	7432	NA	
2	25-34	Male	2015	21427	166	488	1584	6198	5920	7071	NA	
3	25-34	Male	2014	21217	151	512	1611	6323	5910	6710	NA	
4	25-34	Male	2013	20816	161	582	1747	6058	5749	6519	NA	
5	25-34	Male	2012	20464	161	579	1707	6127	5619	6270	NA	
6	25-34	Male	2011	20985	190	657	1791	6444	5750	6151	NA	
7	25-34	Male	2010	20689	186	641	1866	6458	5587	5951	NA	
8	25-34	Male	2009	20440	184	695	1806	6495	5508	5752	NA	
9	25-34	Male	2008	20210	172	714	1874	6356	5277	5816	NA	
10	25-34	Male	2007	20024	246	757	1930	6361	5137	5593	NA	
#	i 356 r	nore r	ows									

Here, a "Level of Schooling Attained" variable is spread across the columns, from elem4 to coll4. We need a *key* column called "education" with the various levels of schooling, and a corresponding *value* column containing the counts.

Wide to long with pivot_longer()

We're going to put the columns elem4:coll4 into a new column, creating a new categorical measure named education. The numbers currently under each column will become a new value column corresponding to that level of education.

edu ⊳ pivo	t_longe	r(elem4	:coll4	, names	_to =	"education")		
# A ti	bble: 2,	196 × 7	7					
age	sex	year	total	median	educat	ion value		
<ch< th=""><th>r> <chr></chr></th><th><int></int></th><th><int></int></th><th><dbl></dbl></th><th><chr></chr></th><th><dbl></dbl></th><th></th><th></th></ch<>	r> <chr></chr>	<int></int>	<int></int>	<dbl></dbl>	<chr></chr>	<dbl></dbl>		
1 25-	34 Male	2016	21845	NA	elem4	116		
2 25-	34 Male	2016	21845	NA	elem8	468		
3 25-	34 Male	2016	21845	NA	hs3	1427		
4 25-	34 Male	2016	21845	NA	hs4	6386		
5 25-	34 Male	2016	21845	NA	coll3	6015		
6 25-	34 Male	2016	21845	NA	coll4	7432		
7 25-	34 Male	2015	21427	NA	elem4	166		
8 25-	34 Male	2015	21427	NA	elem8	488		
9 25-	34 Male	2015	21427	NA	hs3	1584		
10 25-	34 Male	2015	21427	NA	hs4	6198		
# i 2,	186 more	rows						

Wide to long with pivot_longer()

We can name the value column to whatever we like. Here it's a number of people.

	lu ⊳ pivot_	_longer			"educat	ion",	
# /	A tibb	le: 2,	196 × 7	7			
	age	sex	year	total	median	education	n
	<chr></chr>	<chr></chr>	<int></int>	<int></int>	<dbl></dbl>	<chr></chr>	<dbl></dbl>
1	25-34	Male	2016	21845	NA	elem4	116
2	25-34	Male	2016	21845	NA	elem8	468
3	25-34	Male	2016	21845	NA	hs3	1427
4	25-34	Male	2016	21845	NA	hs4	6386
5	25-34	Male	2016	21845	NA	coll3	6015
6	25-34	Male	2016	21845	NA	coll4	7432
7	25-34	Male	2015	21427	NA	elem4	166
8	25-34	Male	2015	21427	NA	elem8	488
9	25-34	Male	2015	21427	NA	hs3	1584
10	25-34	Male	2015	21427	NA	hs4	6198
#	i 2,18	6 more	rows				

How to get your own data into R

Reading in CSV files

Base R has read.csv()

Corresponding tidyverse "underscored" version: read_csv().

It is pickier and more talkative than the Base R version. Use it instead.

Where's my data? Using here()

If we're loading a file, it's coming from *somewhere*.

If it's a file on our hard drive somewhere, we will need to interact with the file system. We should try to do this in a way that avoids *absolute* file paths.

This is not portable!
df ← read_csv("/Users/kjhealy/Documents/data/misc/project/data/mydata.csv")

We should also do it in a way that is *platform independent*.

This makes it easier to share your work, move it around, etc. Projects should be self-contained.

Where's my data? Using here()

The here package, and here() function builds paths relative to the top level of your R project.

here() # this path will be different for you

[1] "/Users/kjhealy/Documents/courses/vsd"

Where's the data? Using here()

This seminar's files all live in an RStudio project. It looks like this:

/Users/kjhealy/Documents/courses/vsd — 00_dummy_files — R — README.md - README.gmd extensions freeze _quarto.yml _site _targets _targets.R _variables.yml – about assignment – content – data - deploy.sh — example – files — grades - html – images index.html index.gmd merm.txt projects

– renv

I want to load files from the data folder, but I also want *you* to be able to load them. I'm writing this from somewhere deep in the slides folder, but you won't be there

Where's the data? Using here()

So:

Load the file relative to the path from the top of the project, without separators, etc
organs ← read_csv(file = here("files", "data", "organdonation.csv"))

Where's the data? Using here()

organs

A tibble: 238 × 21

	country	vear	donors	non	pop.dens	adn	nel nhn	health	health.lag	nubbealth	
	. ,			• •	• •	• ·	• • •		-	•	
	<chr></chr>	<apt></apt>	<dbl></dbl>	<apt></apt>		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
1	Austra…	NA	NA	17065	0.220	16774	16591	1300	1224	4.8	
2	Austra	1991	12.1	17284	0.223	17171	16774	1379	1300	5.4	
3	Austra…	1992	12.4	17495	0.226	17914	17171	1455	1379	5.4	
4	Austra…	1993	12.5	17667	0.228	18883	17914	1540	1455	5.4	
5	Austra	1994	10.2	17855	0.231	19849	18883	1626	1540	5.4	
6	Austra	1995	10.2	18072	0.233	21079	19849	1737	1626	5.5	
7	Austra	1996	10.6	18311	0.237	21923	21079	1846	1737	5.6	
8	Austra	1997	10.3	18518	0.239	22961	21923	1948	1846	5.7	
9	Austra	1998	10.5	18711	0.242	24148	22961	2077	1948	5.9	
10	Austra	1999	8.67	18926	0.244	25445	24148	2231	2077	6.1	

- # i 228 more rows
- # i 11 more variables: roads <dbl>, cerebvas <dbl>, assault <dbl>,
- # external <dbl>, txp.pop <dbl>, world <chr>, opt <chr>, consent.law <chr>,
- # consent.practice <chr>, consistent <chr>, ccode <chr>

And there it is.

read_csv() has variants

 ${\tt read_csv}$ () Field separator is a comma: ,

organs ← read_csv(file = here("files", "data", "organdonation.csv"))

read_csv2() Field separator is a semicolon: ;

Both are special cases of **read_delim()**

Other species are also catered to

read_tsv() Tab separated.

read_fwf() Fixed-width files.

read_log() Log files (i.e. computer log files).

read_lines() Just read in lines, without trying to parse them.

Also often useful...

read_table()

For data that's separated by one (or more) columns of space.

And for foreign file formats ...

The haven package provides

read_dta() Stata
read_spss() SPSS
read_sas() SAS
read_xpt() SAS Transport

Make these functions available with library(haven)

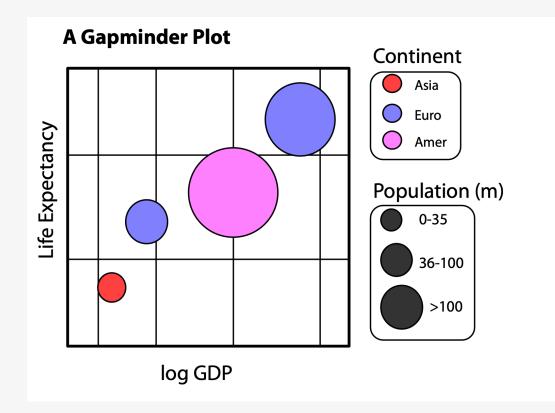
You can read files remotely, too

You can give these functions local files, or they can also be pointed at URLs.

Compressed files (.zip, .tar.gz) will be automatically uncompressed.

(Be careful what you download from remote locations!)

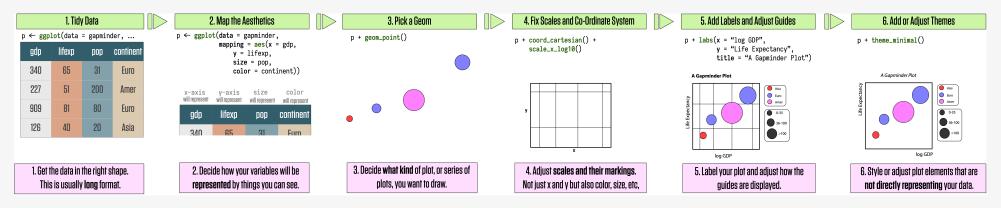
organ_remote ←	<pre>read_csv("http://kjhealy.co/organdonation.csv")</pre>
organ_remote	


A tibble: 238 × 21

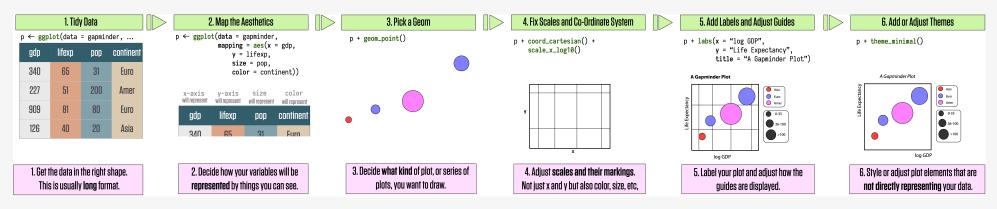
	country	year	donors	рор	pop.dens	gdp	gdp.lag	health	health.lag	pubhealth	
	<chr></chr>	<dbl></dbl>									
1	Austra…	NA	NA	17065	0.220	16774	16591	1300	1224	4.8	
2	Austra	1991	12.1	17284	0.223	17171	16774	1379	1300	5.4	
3	Austra…	1992	12.4	17495	0.226	17914	17171	1455	1379	5.4	
4	Austra…	1993	12.5	17667	0.228	18883	17914	1540	1455	5.4	
5	Austra	1994	10.2	17855	0.231	19849	18883	1626	1540	5.4	
6	Austra	1995	10.2	18072	0.233	21079	19849	1737	1626	5.5	
7	Austra	1996	10.6	18311	0.237	21923	21079	1846	1737	5.6	
8	Austra	1997	10.3	18518	0.239	22961	21923	1948	1846	5.7	
9	Austra	1998	10.5	18711	0.242	24148	22961	2077	1948	5.9	
10	Austra	1999	8.67	18926	0.244	25445	24148	2231	2077	6.1	
# · 228 mara rawa											

- # i 228 more rows
- # i 11 more variables: roads <dbl>, cerebvas <dbl>, assault <dbl>,
- # external <dbl>, txp.pop <dbl>, world <chr>, opt <chr>, consent.law <chr>,
- # consent.practice <chr>, consistent <chr>, ccode <chr>

A Plot's Components

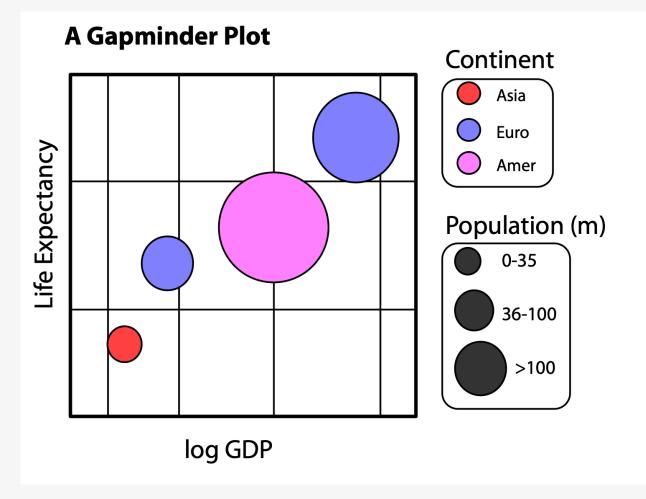

What we need our code to make

Data **represented** by visual elements; like *position*, *length*, *color*, and *size*; Each measured on some **scale**; Each scale with a labeled **guide**; With the plot itself also **titled** and labeled.


How does ggplot dothis?

Here's the whole thing, start to finish

Flow of action

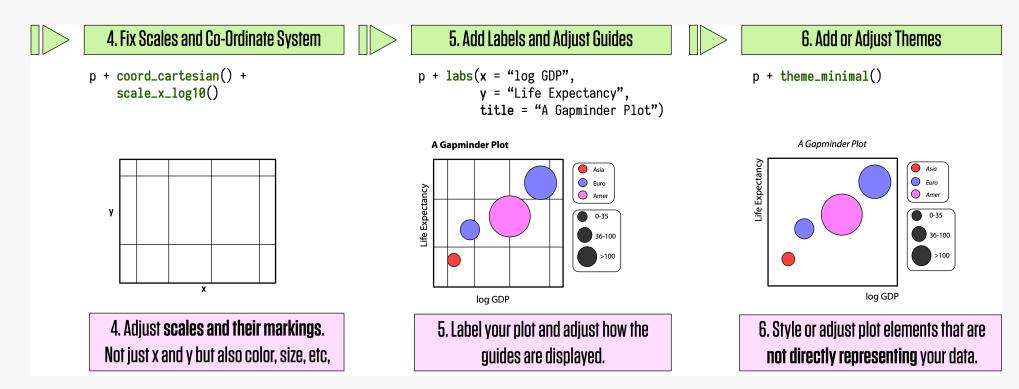

We'll go through it step by step

Flow of action

gdp	lifexp	рор	continent
340	65	31	Euro
227	51	200	Amer
909	81	80	Euro
126	40	20	Asia

What we start with

Where we're going


1. Tidy Data							
р	$p \leftarrow ggplot(data = gapminder,$						
	gdp	lifexp pop continent					
	340	65	31	Euro			
	227	51	200	Amer			
	909	81	80	Euro			
	126	40	20	Asia			

2. Map the Aesthetics 3. Pick a Geom $p \leftarrow ggplot(data = gapminder,$ p + geom_point() mapping = aes(x = gdp, y = lifexp, size = pop, color = continent)) size color y-axis x-axis will represent will represent will represent will represent lifexp continent gdp pop 3/10 65 21 Furn

1. Get the data in the right shape. This is usually **long** format. 2. Decide how your variables will be **represented** by things you can see.

3. Decide **what kind** of plot, or series of plots, you want to draw.

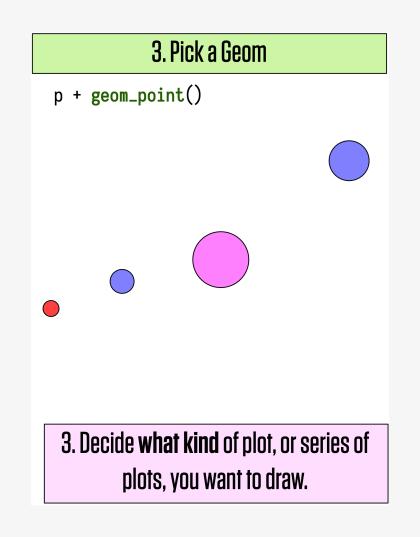
Core steps

Optional steps

ggplot's flow of action: required

1. Tidy Data					
p ← ggp	lot(data	= gapmino	der,		
gdp	lifexp pop continent				
340	65	31	Euro		
227	51	200	Amer		
909	81	80	Euro		
126	40	20	Asia		

1. Get the data in the right shape. This is usually **long** format.


ggplot's flow of action: required

	2. Map the Aesthetics						
р							
	x-axis will represent						
	gdp	lifexp	рор	continent			
	340						

2. Decide how your variables will be **represented** by things you can see.

Aesthetic mappings

ggplot's flow of action: required

Let's go piece by piece by

Start with the data

• •	
gapminder	
Yapiitia	
0 1	

#	А	tib	ble:	1,	,704	×	6

country	continent	year	lifeExp	рор	gdpPercap
<fct></fct>	<fct></fct>	<int></int>	<dbl></dbl>	<int></int>	<dbl></dbl>
1 Afghanistan	Asia	1952	28.8	8425333	779.
2 Afghanistan	Asia	1957	30.3	9240934	821.
3 Afghanistan	Asia	1962	32.0	10267083	853.
4 Afghanistan	Asia	1967	34.0	11537966	836.
5 Afghanistan	Asia	1972	36.1	13079460	740.
6 Afghanistan	Asia	1977	38.4	14880372	786.
7 Afghanistan	Asia	1982	39.9	12881816	978.
8 Afghanistan	Asia	1987	40.8	13867957	852.
9 Afghanistan	Asia	1992	41.7	16317921	649.
10 Afghanistan	Asia	1997	41.8	22227415	635.
# i 1,694 more	rows				

dim(gapminder)

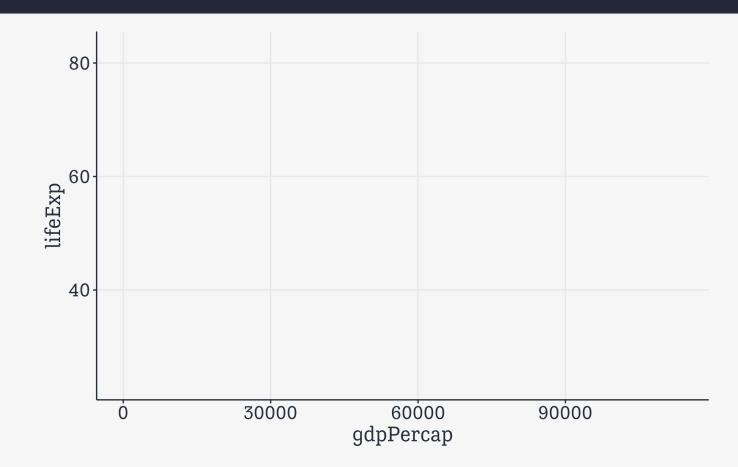
[1] 1704 6

Create a plot object

Data is the gapminder tibble.

p ← ggplot(data = gapminder)

Map variables to aesthetics

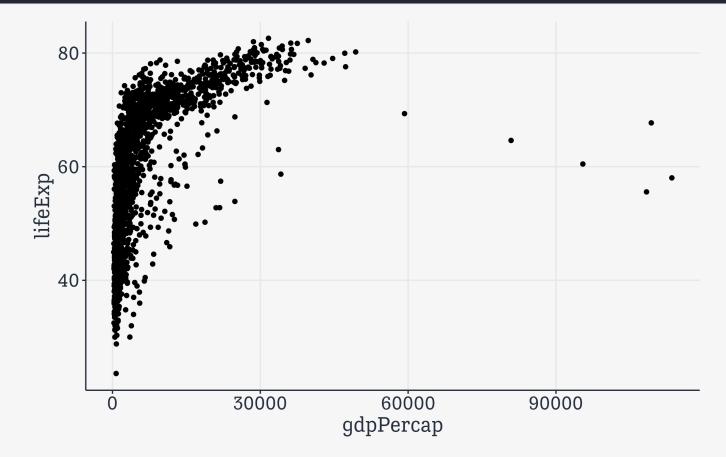

Tell ggplot the variables you want represented by visual elements on the plot

Map variables to aesthetics

The mapping = aes(...) call links variables to things you will see on the plot.

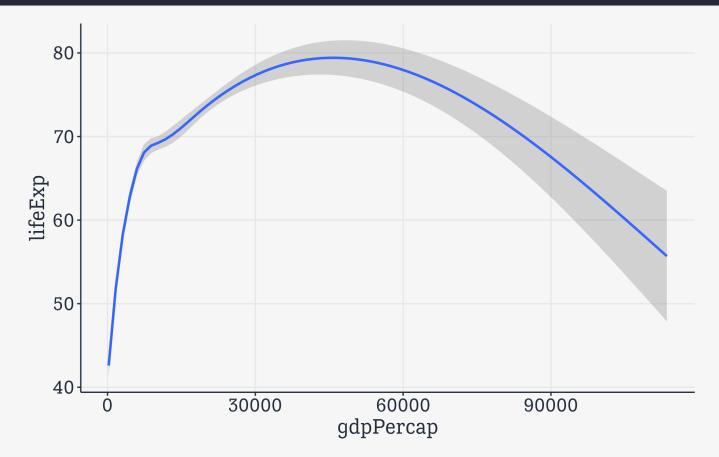
x and y represent the quantities determining position on the x and y axes. Other aesthetic mappings can include, e.g., color, shape, size, and fill. Mappings do not *directly* specify the particular, e.g., colors, shapes, or line styles that will appear on the plot. Rather, they establish *which variables* in the data will be represented by *which visible elements* on the plot.

p has data and mappings but no geom

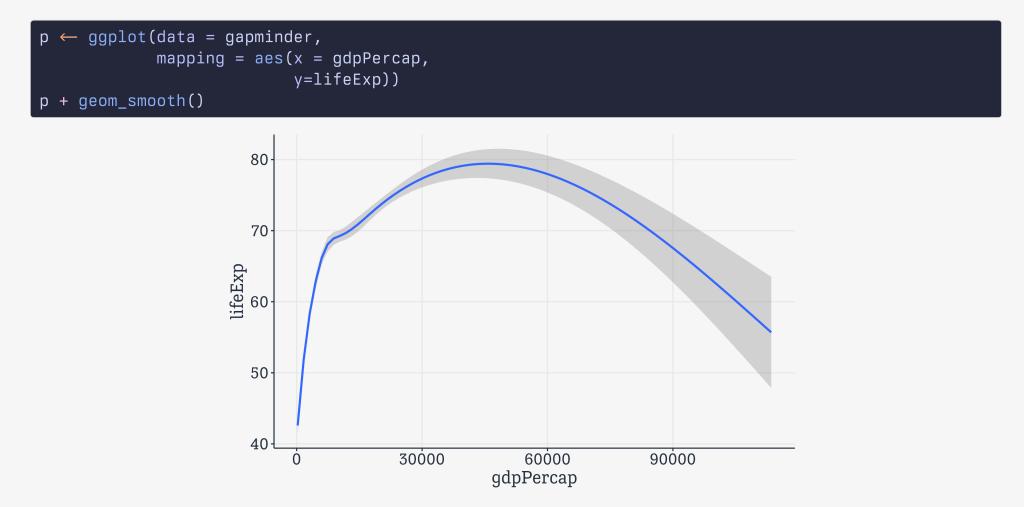


This empty plot has no geoms.

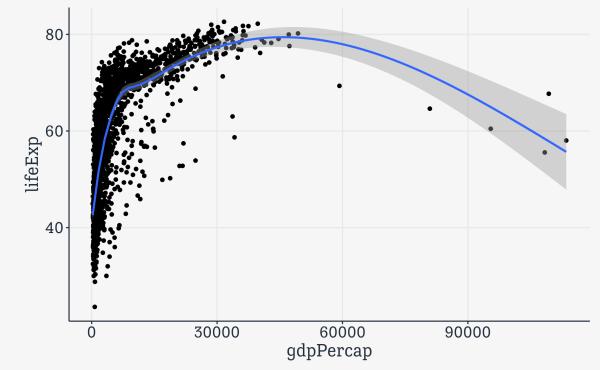
р


p + geom_point()

A scatterplot of Life Expectancy vs GDP

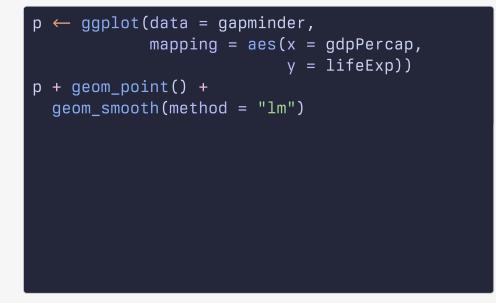

Try a different geom

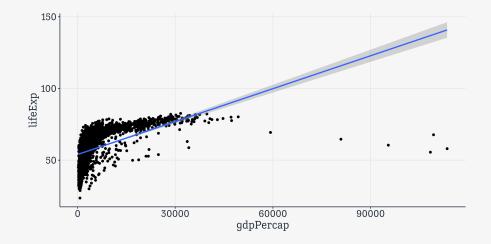
p + geom_smooth()


A scatterplot of Life Expectancy vs GDP

Build your plots layer by layer

Life Expectancy vs GDP, using a smoother.

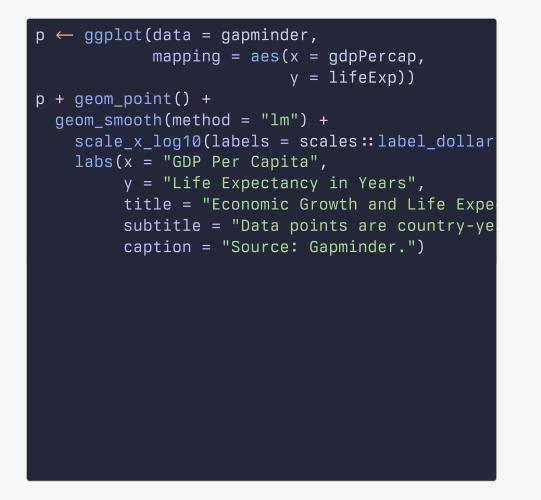



Life Expectancy vs GDP, using a smoother.

p + geom_smooth()

Every geom is a function

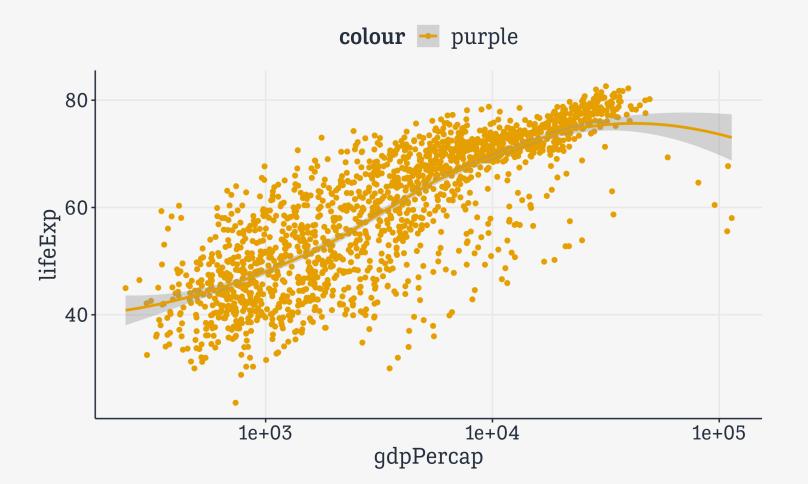
Functions take arguments


p + geom_point()

p + geom_point()

Add labels, title, and caption

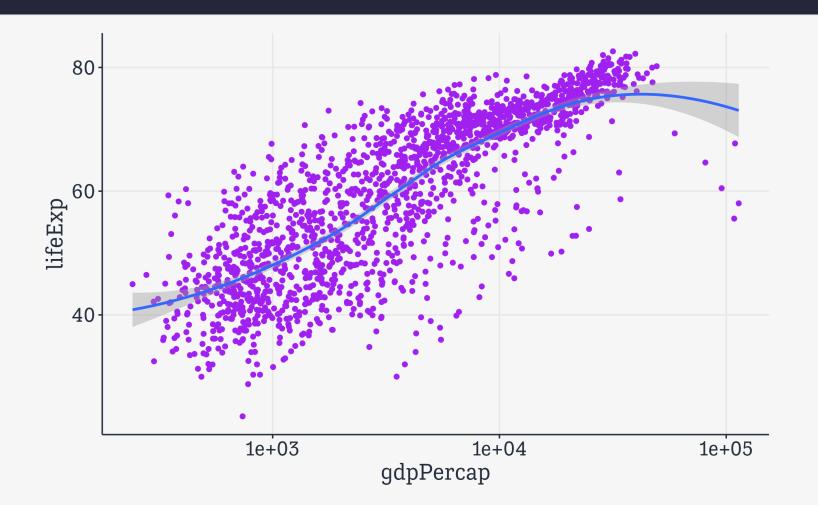
Economic Growth and Life Expectancy Data points are country-years Life Expectancy in Years 80 60 40 \$1,000 \$10,000 \$100,000 **GDP** Per Capita


Source: Gapminder.

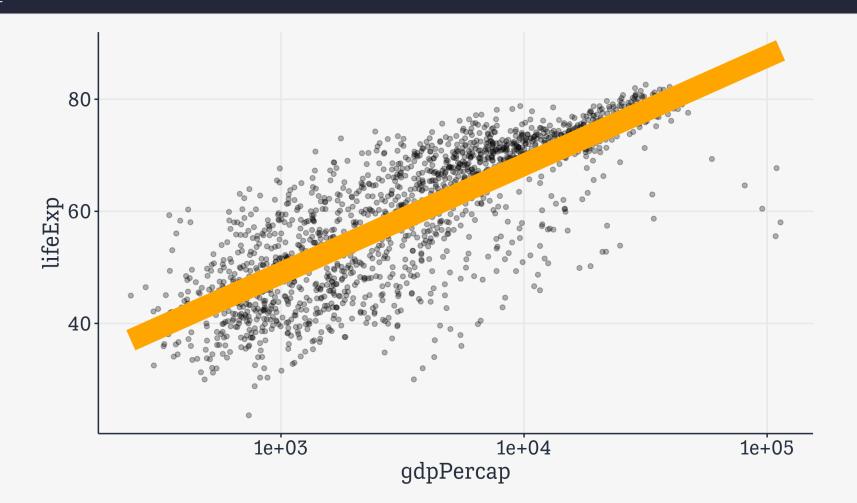
Mapping vs Setting your plot's aesthetics

"Can I change the color of the points?"

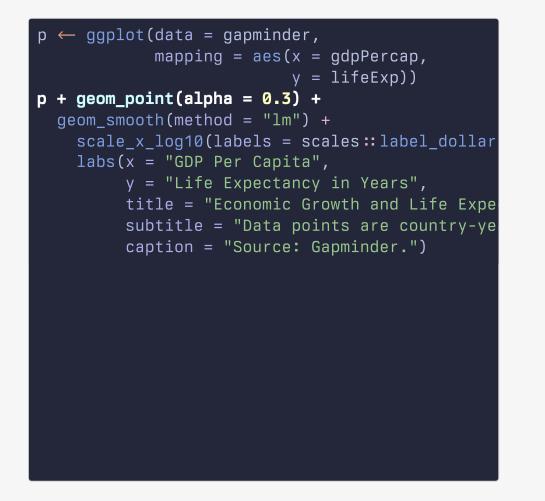
What has gone wrong here?

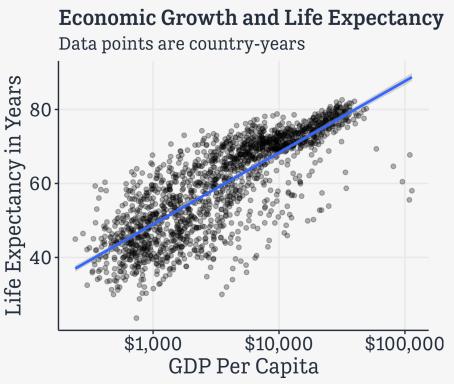

p_out

p_out


Geoms can take many arguments

Here we set color, size, and alpha. Meanwhile x and y are mapped.


We also give non-default values to some other arguments


Geoms can take many arguments

p_out

alpha for overplotting

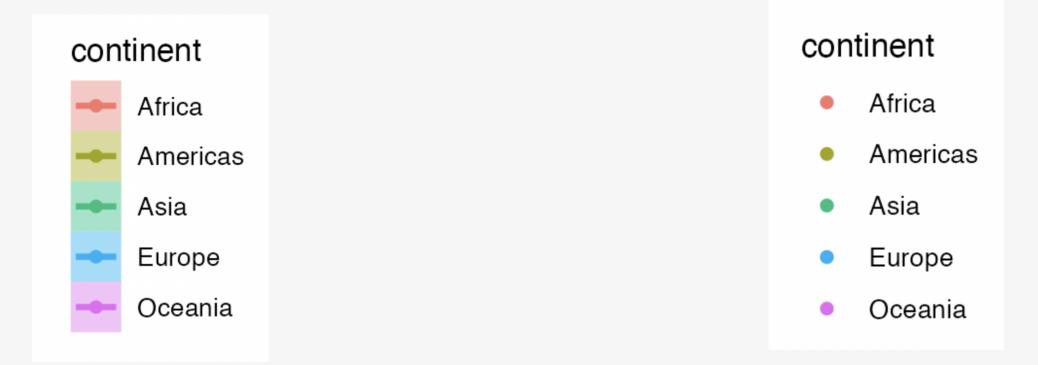
Source: Gapminder.

Map or Set values per geom

p ← ggplot(data = gapminder,
<pre>mapping = aes(x = gdpPercap,</pre>
y = lifeExp,
color = continent,
<pre>fill = continent))</pre>
p + geom_point()

p ← ggplot(data = gapminder,
<pre>mapping = aes(x = gdpPercap,</pre>
y = lifeExp,
color = continent,
fill = continent))
p + geom_point() +
geom_smooth(method = "loess")

Pay attention to which scales and guides are drawn, and why


Guides and scales reflect aes() mappings

mapping = aes(color =
continent, fill = continent)

Guides and scales reflect aes () mappings

```
mapping = aes(color = continent, fill = mapping = aes(color = continent)
continent)
```


Remember: Every mapped variable has a scale

Saving your work


```
## Save the most recent plot
ggsave(filename = "figures/my_figure.png")
## Use here() for more robust file paths
ggsave(filename = here("figures", "my_figure.png"))
## A plot object
p_out ← p + geom_point(mapping = aes(color = log(pop))) +
scale_x_log10()
ggsave(filename = here("figures", "lifexp_vs_gdp_gradient.pdf"),
plot = p_out)
ggsave(here("figures", "lifexp_vs_gdp_gradient.pdf"),
plot = p_out,
width = 8,
height = 5)
```

In code chunks

Set options in any chunk:

#| fig-height: 8

#| fig-width: 5

#| fig-show**:** "hold"

#/ fig-cap: "A caption"

Or for the whole document:

tle: "My Document"
rmat:
html:
fig-width: 8
fig-height: 6
pdf:
fig-width: 7
fig-height: 5
-

ggplot implements a grammar of graphics

A grammar of graphics

The grammar is a set of rules for how to .kjh-lblueproduce graphics from data, by *mapping* data to or *representing* it by geometric objects (like points and lines) that have aesthetic attributes (like position, color, size, and shape), together with further rules for transforming data if needed, for adjusting scales and their guides, and for projecting results onto some coordinate system. Like other rules of syntax, the grammar limits what you can validly say but it doesn't automatically make what you say sensible or meaningful

-

Grouped data and the group aesthetic

Try to make a lineplot

Try to make a lineplot

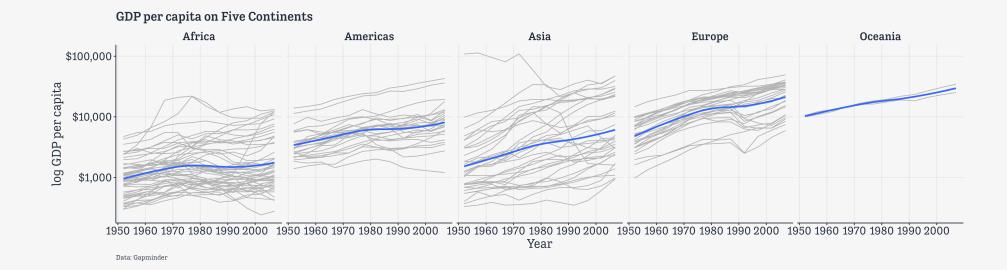
gapminder

# A tibble: 1,7	704 × 6			
country	continent	year	lifeExp	рор
gdpPercap				
<fct></fct>	<fct></fct>	<int></int>	<dbl></dbl>	<int></int>
<dbl></dbl>				
1 Afghanistan	Asia	1952	28.8	8425333
779.				
2 Afghanistan	Asia	1957	30.3	9240934
821.				
3 Afghanistan	Asia	1962	32.0	10267083
853.		40/7	= / 0	
4 Afghanistan	Asıa	1967	34.0	11537966
836. 5 Afabanistan	0 - i -	4070	7/ 4	47070//0
5 Afghanistan	ASIA	1972	56.1	13079460
740.	A = i =	4077	70 /	4/000770
6 Afghanistan	ASIa	1977	58.4	14880372
786.	Acio	1000	70 0	12001014
7 Afghanistan	ASId	1982	59.9	12881816
978.				

Faceting is very powerful

A facet is not a geom; it's a way of arranging repeated geoms by some additional variable

Facets use R's "formula" syntax: facet_wrap(~ continent)


Read the ~ as "on" or "by"

You can also use this syntax: facet_wrap(vars(continent))

This is newer, and consistent with other ways of referring to variables within tidyverse functions.

Facets in action

A more polished faceted plot.

One-variable summaries

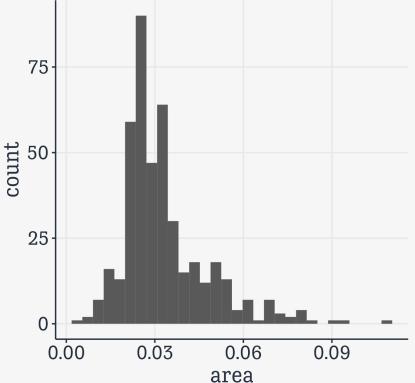
The midwest dataset

County-level census data for Midwestern U.S. Counties

midwest

#	А	tibble:	437	×	28
---	---	---------	-----	---	----

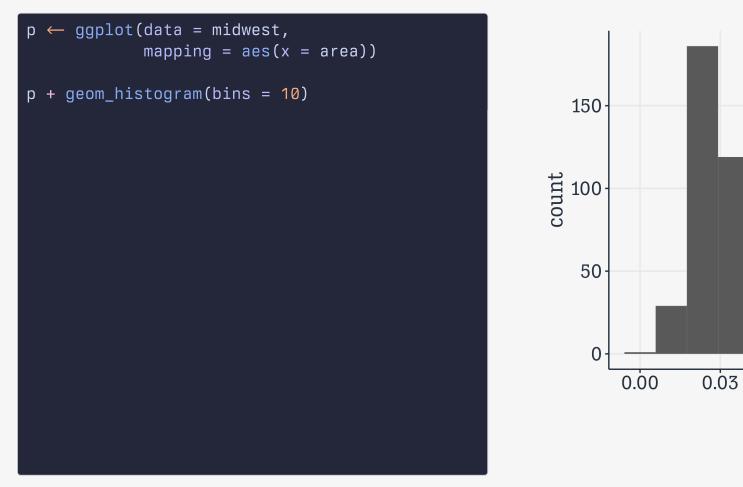
	PID	county	state	area	poptotal	popdensity	popwhite	popblack	popamerindian
	<int></int>	<chr></chr>	<chr></chr>	<dbl></dbl>	<int></int>	<dbl></dbl>	<int></int>	<int></int>	<int></int>
1	561	ADAMS	IL	0.052	66090	1271.	63917	1702	98
2	562	ALEXAN	IL	0.014	10626	759	7054	3496	19
3	563	BOND	IL	0.022	14991	681.	14477	429	35
4	564	BOONE	IL	0.017	30806	1812.	29344	127	46
5	565	BROWN	IL	0.018	5836	324.	5264	547	14
6	566	BUREAU	IL	0.05	35688	714.	35157	50	65
7	567	CALHOUN	IL	0.017	5322	313.	5298	1	8
8	568	CARROLL	IL	0.027	16805	622.	16519	111	30
9	569	CASS	IL	0.024	13437	560.	13384	16	8
10	570	CHAMPA	IL	0.058	173025	2983.	146506	16559	331


i 427 more rows

- # i 19 more variables: popasian <int>, popother <int>, percwhite <dbl>,
- # percblack <dbl>, percamerindan <dbl>, percasian <dbl>, percother <dbl>,
- # popadults <int>, perchsd <dbl>, percollege <dbl>, percprof <dbl>,
- # poppovertyknown <int>, percpovertyknown <dbl>, percbelowpoverty <dbl>,
- # percchildbelowpovert <dbl>, percadultpoverty <dbl>,

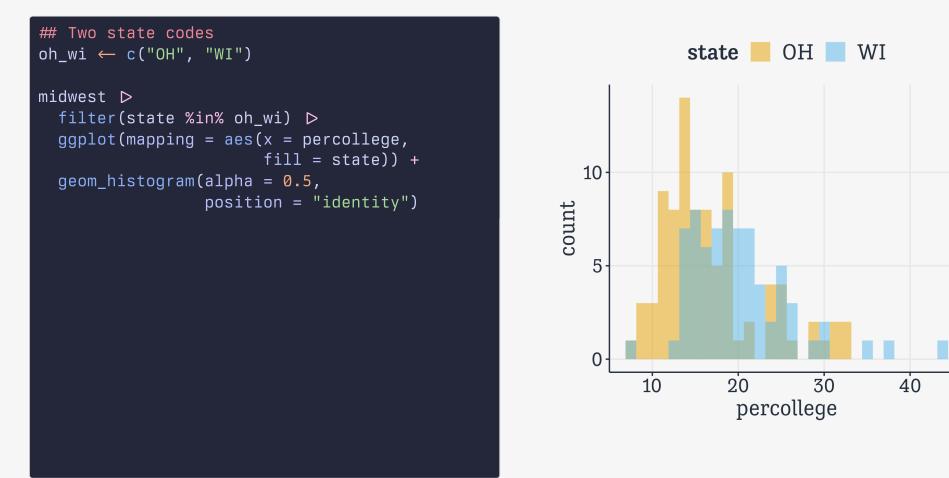
stat_ functions behind the scenes

`stat_bin()` using `bins = 30`. Pick better
value with `binwidth`.


Here the default stat_ function for this geom has to make a choice. It is

stat_ functions behind the scenes

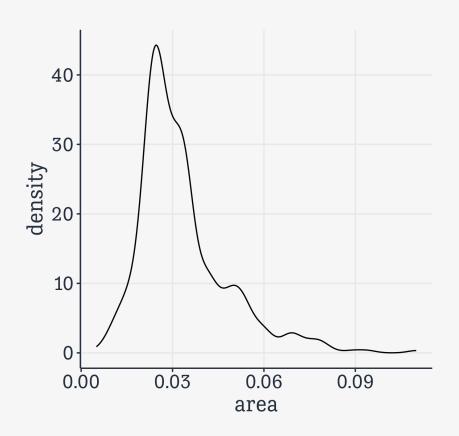
0.09


0.06

area

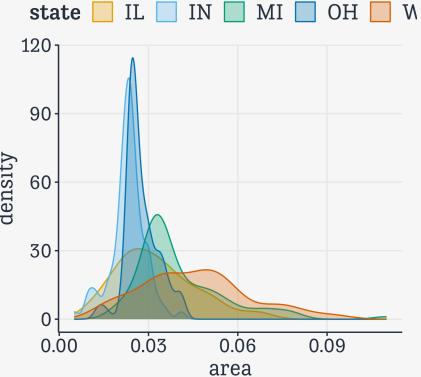
We can choose *either* the number of bins *or* the binwidth

Compare two distributions

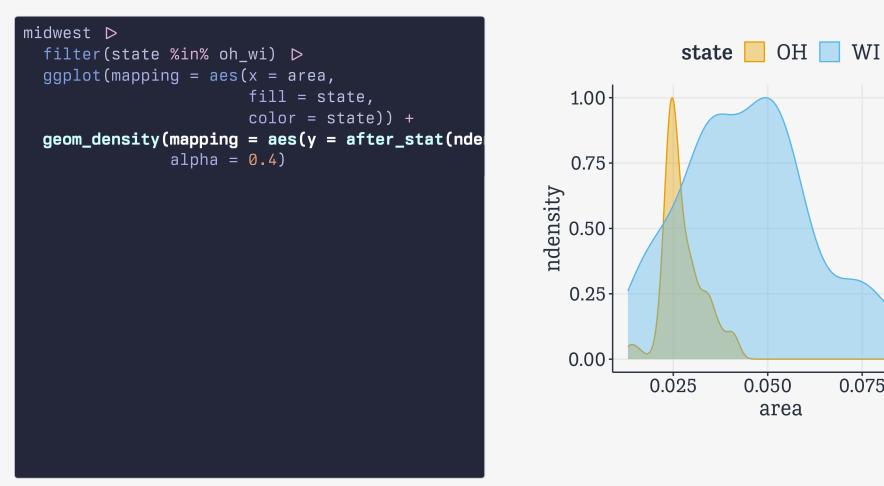


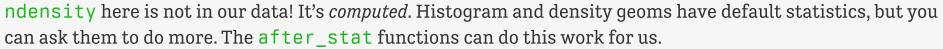
Here we do the whole thing in a pipeline using the pipe and the dplyr verb filter() to subset rows of the data by some condition.

Experiment with leaving the position argument out, or changing it to "dodge".


geom_density()

p + geom_density()

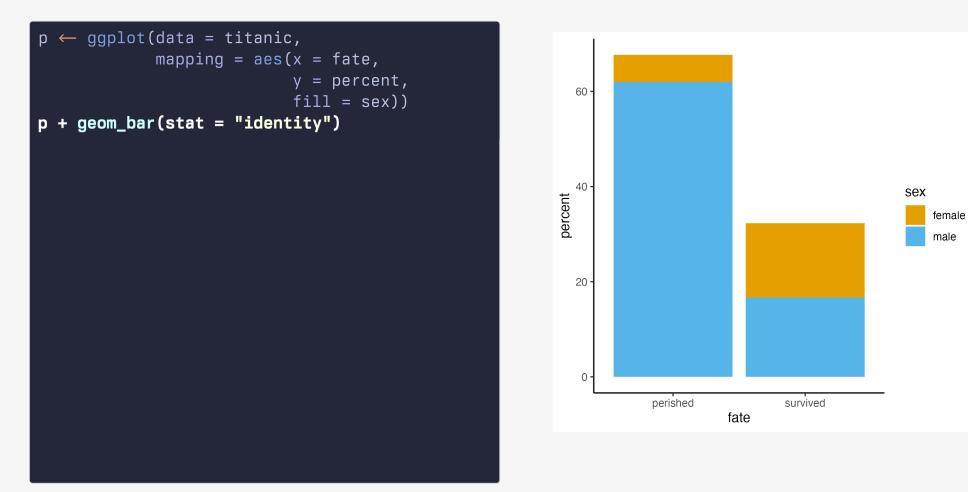



geom_density()

geom_density()

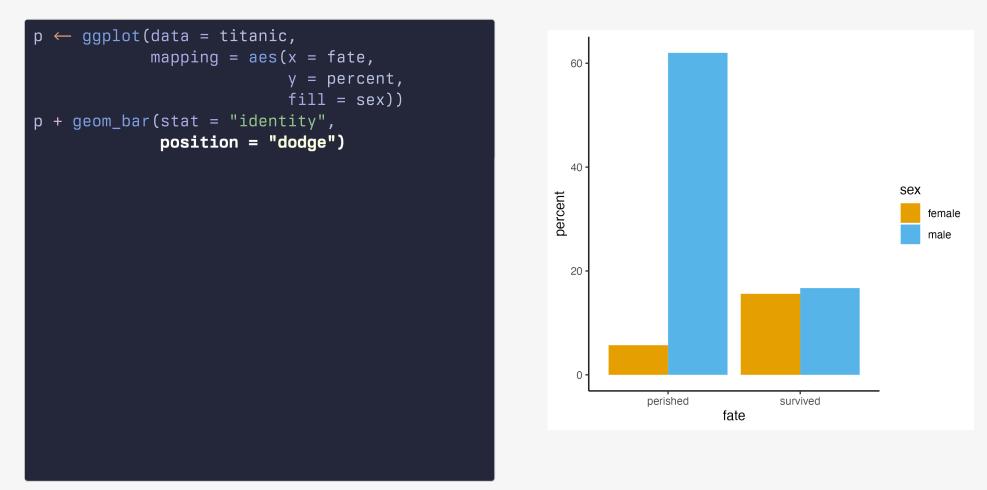
0.050

area

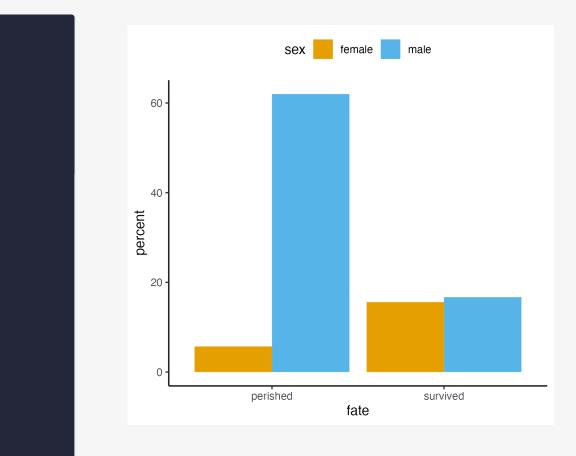

0.075

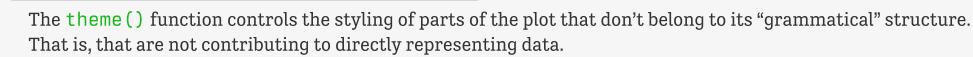
Avoid counting up, when necessary

Sometimes no counting is needed

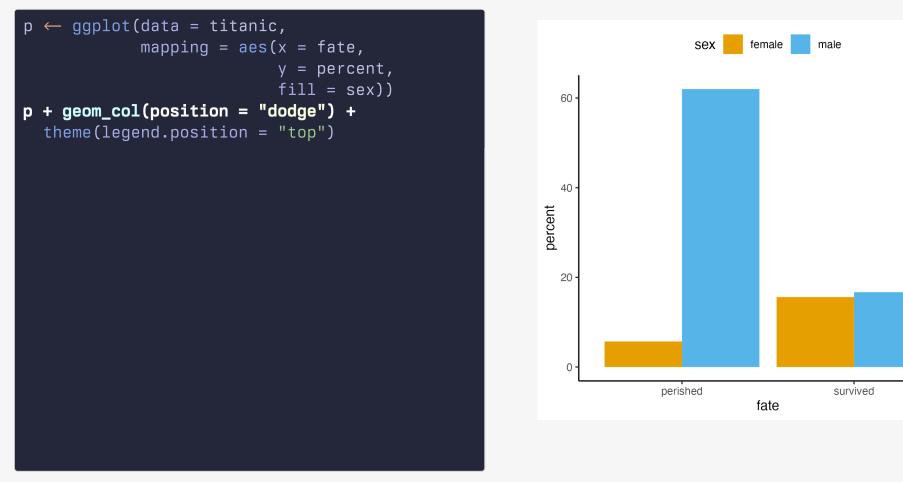

Here we just have a summary table and want to plot a few numbers directly in a bar chart.

geom_bar() wants to count up


By default geom_bar() tries to count up data by category. (Really it's the stat_count() function that does this behind the scenes.) By saying stat="identity" we explicitly tell it not to do that. This also allows us to use a y mapping. Normally this would be the result of the counting up.


geom_bar() stacks bars by default

Position arguments adjust whether the things drawn are placed on top of one another ("stack"), side-by-side ("dodge"), or taken as-is ("identity").


A quick theme() adjustment

For convenience, use geom_col()

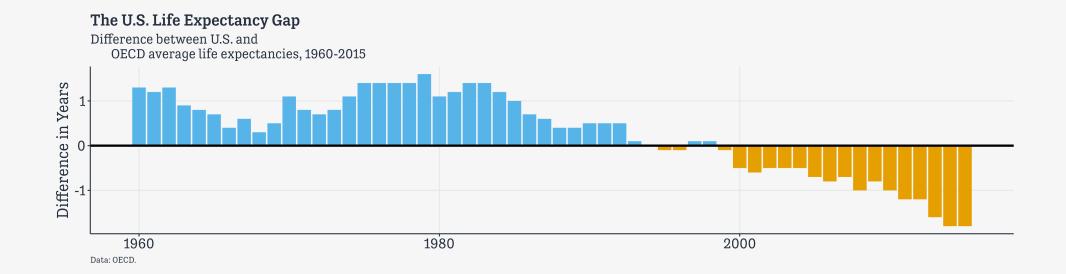
geom_col() assumes stat = "identity" by default. It's for when you want to directly plot a table of
values, rather than create a bar chart by summing over one varible categorized by another.

Using geom_col() for thresholds

oecd_sum

A tibble: 57×5 # Groups: vear [57] year other usa diff hi lo <int> <dbl> <dbl> <dbl> <chr> 1960 68.6 69.9 1.30 Below 1961 69.2 70.4 1.20 Below 2 1962 68.9 70.2 1.30 Below 3 1963 69.1 70 0.900 Below 4 1964 69.5 70.3 0.800 Below 5 1965 69.6 70.3 0.700 Below 6 1966 69.9 70.3 0.400 Below 7 8 1967 70.1 70.7 0.600 Below 1968 70.1 70.4 0.300 Below 9 10 1969 70.1 70.6 0.5 Below # i 47 more rows

Data comparing U.S. average life expectancy to the rest of the OECD average.


diff is difference in years with respect to the U.S.

hi_lo is a flag saying whether the OECD is above or below the U.S.

Using geom_col() for thresholds

x = NULL means "Don't label the x-axis (not even with the default value, the variable name).

Using geom_col() for thresholds

