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Load our libraries

library(here)      # manage file paths
library(socviz)    # data and some useful functions
library(tidyverse) # your friend and mine
library(gapminder) # some data



Nearly done with the scaffolding

✅ Thought about elements of visualization

✅ Gotten oriented to R and RStudio

✅ Knitted a document

✅ Written a bit of ggplot code



Nearly done with the scaffolding

✅ Thought about elements of visualization

✅ Gotten oriented to R and RStudio

✅ Knitted a document

✅ Written a bit of ggplot code

⬜ Get my data in to R

⬜ Make a plot with it



Reviewing the Problem Sets

Windows and Zip Files

Rendering a Project and watching it update

Strategies for debugging your code: a chunk at a

time, a step at a time



In the background

Things the columns in our table can be:
Words naming unordered categories: e.g. Asia, Europe, America

Words naming ordered categories: e.g. Elementary, High School, College; or Strongly Agree, Agree, Neutral,

Disagree, Strongly Disagree; etc.

Numbers that can take on just a quite limited range of (integer) values: e.g. number of children; years of

schooling; number of people in the household. These are very close to categorical variables as well, but are more

often counts.

Numbers that can take on many values in some range, depending on how precisely we measure them:

e.g. distance traveled to work; height in centimeters; number of computers sold per quarter; population size

Truly “continuous” measures are comparatively rare in social science; most often encountered with aggregate

quantities rather than individual ones. (Even things like “income” end up being measured with e.g. 10

categories.)



Feed ggplot tidy data



Tidy Data



What is tidy data?

Tidy data



What is tidy data?

Tidy data is in long format



Every column is a single variable

Grolemund & Wickham



Every row is a single observation

Grolemund & Wickham



Every cell is a single value

Grolemund & Wickham



Get your data into long format

Very, very often, the solution to some data-wrangling or data visualization

problem in a Tidyverse-focused workflow is:



Get your data into long format

Very, very often, the solution to some data-wrangling or data visualization

problem in a Tidyverse-focused workflow is:

First, get the data into long format
Then do the thing you want.



Untidy data exists for good reasons

Storing and printing data in long format entails a lot of repetition:

species island year bill

Adelie Biscoe 2007 38.32

Adelie Biscoe 2008 38.70

Adelie Biscoe 2009 39.69

Adelie Dream 2007 39.10

Adelie Dream 2008 38.19

Adelie Dream 2009 38.15

Adelie Torgersen 2007 38.80

Adelie Torgersen 2008 38.77

Adelie Torgersen 2009 39.31

Chinstrap Dream 2007 48.72

Chinstrap Dream 2008 48.70

Chinstrap Dream 2009 49 05

library(palmerpenguins)
penguins |> 
  group_by(species, island, year) |> 
  summarize(bill = round(mean(bill_length_mm, na.rm = TRUE),2)) |> 
  knitr::kable()



Untidy data exists for good reasons

A wide format is easier and more efficient to read in print:

species island 2007 2008 2009

Adelie Biscoe 38.32 38.70 39.69

Adelie Dream 39.10 38.19 38.15

Adelie Torgersen 38.80 38.77 39.31

Chinstrap Dream 48.72 48.70 49.05

Gentoo Biscoe 47.01 46.94 48.50

penguins |> 
  group_by(species, island, year) |> 
  summarize(bill = round(mean(bill_length_mm, na.rm = TRUE), 2)) |> 
  pivot_wider(names_from = year, values_from = bill) |> 
  knitr::kable()



Untidy data exists for good reasons

A wide format is easier and more efficient to read in print:

species year Biscoe Dream Torgersen

Adelie 2007 38.32 39.10 38.80

Adelie 2008 38.70 38.19 38.77

Adelie 2009 39.69 38.15 39.31

Chinstrap 2007 NA 48.72 NA

Chinstrap 2008 NA 48.70 NA

Chinstrap 2009 NA 49.05 NA

Gentoo 2007 47.01 NA NA

Gentoo 2008 46.94 NA NA

Gentoo 2009 48.50 NA NA

penguins |> 
  group_by(species, year, island) |> 
  summarize(bill = round(mean(bill_length_mm, na.rm = TRUE), 2)) |> 
  pivot_wider(names_from = island, values_from = bill) |> 
  knitr::kable()



But also for less good reasons

Spot the untidiness



But also for less good reasons

😠 More than one header row

😡 Mixed data types in some

columns

💀 Color and typography used

to encode variables and their

values

Spot the untidiness



Fix it before you import it

Prevention is better than cure!

An excellent article by Karl Broman and Kara Woo:

Broman KW, Woo KH (2018) .” The American Statistician 78:2–10

Data organization in spreadsheets

“Data Organization in Spreadsheets”

doi:10.1080/00031305.2017.1375989


The most common tidyr operation

Pivoting from wide to long:

Here, a “Level of Schooling Attained” variable is spread across the

columns, from elem4 to coll4. We need a key column called “education”

with the various levels of schooling, and a corresponding value column

containing the counts.

edu

# A tibble: 366 × 11
   age   sex    year total elem4 elem8   hs3   hs4 coll3 coll4 median
   <chr> <chr> <int> <int> <int> <int> <dbl> <dbl> <dbl> <dbl>  <dbl>
 1 25-34 Male   2016 21845   116   468  1427  6386  6015  7432     NA
 2 25-34 Male   2015 21427   166   488  1584  6198  5920  7071     NA
 3 25-34 Male   2014 21217   151   512  1611  6323  5910  6710     NA
 4 25-34 Male   2013 20816   161   582  1747  6058  5749  6519     NA
 5 25-34 Male   2012 20464   161   579  1707  6127  5619  6270     NA
 6 25-34 Male   2011 20985   190   657  1791  6444  5750  6151     NA
 7 25-34 Male   2010 20689   186   641  1866  6458  5587  5951     NA
 8 25-34 Male   2009 20440   184   695  1806  6495  5508  5752     NA
 9 25-34 Male   2008 20210   172   714  1874  6356  5277  5816     NA
10 25-34 Male   2007 20024   246   757  1930  6361  5137  5593     NA
# ℹ 356 more rows



Wide to long with pivot_longer()

We’re going to put the columns elem4:coll4 into a new column,

creating a new categorical measure named education. The numbers

currently under each column will become a new value column

corresponding to that level of education.

edu |> 
  pivot_longer(elem4:coll4, names_to = "education")

# A tibble: 2,196 × 7
   age   sex    year total median education value
   <chr> <chr> <int> <int>  <dbl> <chr>     <dbl>
 1 25-34 Male   2016 21845     NA elem4       116
 2 25-34 Male   2016 21845     NA elem8       468
 3 25-34 Male   2016 21845     NA hs3        1427
 4 25-34 Male   2016 21845     NA hs4        6386
 5 25-34 Male   2016 21845     NA coll3      6015
 6 25-34 Male   2016 21845     NA coll4      7432
 7 25-34 Male   2015 21427     NA elem4       166
 8 25-34 Male   2015 21427     NA elem8       488
 9 25-34 Male   2015 21427     NA hs3        1584
10 25-34 Male   2015 21427     NA hs4        6198
# ℹ 2,186 more rows



Wide to long with pivot_longer()

We can name the value column to whatever we like. Here it’s a number of

people.

edu |> 
  pivot_longer(elem4:coll4, 
               names_to = "education", 
               values_to = "n")

# A tibble: 2,196 × 7
   age   sex    year total median education     n
   <chr> <chr> <int> <int>  <dbl> <chr>     <dbl>
 1 25-34 Male   2016 21845     NA elem4       116
 2 25-34 Male   2016 21845     NA elem8       468
 3 25-34 Male   2016 21845     NA hs3        1427
 4 25-34 Male   2016 21845     NA hs4        6386
 5 25-34 Male   2016 21845     NA coll3      6015
 6 25-34 Male   2016 21845     NA coll4      7432
 7 25-34 Male   2015 21427     NA elem4       166
 8 25-34 Male   2015 21427     NA elem8       488
 9 25-34 Male   2015 21427     NA hs3        1584
10 25-34 Male   2015 21427     NA hs4        6198
# ℹ 2,186 more rows



How to get your own data

into R



Reading in CSV files

Base R has read.csv()

Corresponding tidyverse “underscored” version: read_csv().

It is pickier and more talkative than the Base R version. Use it instead.



Where’s my data? Using here()

If we’re loading a file, it’s coming from somewhere.

If it’s a file on our hard drive somewhere, we will need to interact with the file system. We should try to do this

in a way that avoids absolute file paths.

We should also do it in a way that is platform independent.

This makes it easier to share your work, move it around, etc. Projects should be self-contained.

# This is not portable!
df <- read_csv("/Users/kjhealy/Documents/data/misc/project/data/mydata.csv")



Where’s my data? Using here()

The here package, and here() function builds paths relative to the top

level of your R project.

here() # this path will be different for you

[1] "/Users/kjhealy/Documents/courses/vsd"



Where’s the data? Using here()

This seminar’s files all live in an RStudio project. It looks like this:

I want to load files from the data folder, but I also want you to be able to

load them. I’m writing this from somewhere deep in the slides folder,

but you won’t be there

/Users/kjhealy/Documents/courses/vsd
├── 00_dummy_files
├── R
├── README.md
├── README.qmd
├── _extensions
├── _freeze
├── _quarto.yml
├── _site
├── _targets
├── _targets.R
├── _variables.yml
├── about
├── assignment
├── content
├── data
├── deploy.sh
├── example
├── files
├── grades
├── html
├── images
├── index.html
├── index.qmd
├── merm.txt
├── projects
├── renv
├



Where’s the data? Using here()

So:

## Load the file relative to the path from the top of the project, without separators, etc
organs <- read_csv(file = here("files", "data", "organdonation.csv"))



Where’s the data? Using here()

And there it is.

organs

# A tibble: 238 × 21
   country  year donors   pop pop.dens   gdp gdp.lag health health.lag pubhealth
   <chr>   <dbl>  <dbl> <dbl>    <dbl> <dbl>   <dbl>  <dbl>      <dbl>     <dbl>
 1 Austra…    NA  NA    17065    0.220 16774   16591   1300       1224       4.8
 2 Austra…  1991  12.1  17284    0.223 17171   16774   1379       1300       5.4
 3 Austra…  1992  12.4  17495    0.226 17914   17171   1455       1379       5.4
 4 Austra…  1993  12.5  17667    0.228 18883   17914   1540       1455       5.4
 5 Austra…  1994  10.2  17855    0.231 19849   18883   1626       1540       5.4
 6 Austra…  1995  10.2  18072    0.233 21079   19849   1737       1626       5.5
 7 Austra…  1996  10.6  18311    0.237 21923   21079   1846       1737       5.6
 8 Austra…  1997  10.3  18518    0.239 22961   21923   1948       1846       5.7
 9 Austra…  1998  10.5  18711    0.242 24148   22961   2077       1948       5.9
10 Austra…  1999   8.67 18926    0.244 25445   24148   2231       2077       6.1
# ℹ 228 more rows
# ℹ 11 more variables: roads <dbl>, cerebvas <dbl>, assault <dbl>,
#   external <dbl>, txp.pop <dbl>, world <chr>, opt <chr>, consent.law <chr>,
#   consent.practice <chr>, consistent <chr>, ccode <chr>



read_csv() has variants

read_csv() Field separator is a comma: ,

read_csv2() Field separator is a semicolon: ;

Both are special cases of read_delim()

organs <- read_csv(file = here("files", "data", "organdonation.csv"))

# Example only
my_data <- read_csv2(file = here("data", "my_euro_file.csv))



Other species are also catered to

read_tsv() Tab separated.

read_fwf() Fixed-width files.

read_log() Log files (i.e. computer log files).

read_lines() Just read in lines, without trying to parse them.



Also often useful …

read_table()

For data that’s separated by one (or more) columns of space.



And for foreign file formats …

The haven package provides

read_dta() Stata

read_spss() SPSS

read_sas() SAS

read_xpt() SAS Transport

Make these functions available with library(haven)



You can read files remotely, too

You can give these functions local files, or they can also be pointed at URLs.

Compressed files (.zip, .tar.gz) will be automatically uncompressed.

(Be careful what you download from remote locations!)

organ_remote <- read_csv("http://kjhealy.co/organdonation.csv")
organ_remote

# A tibble: 238 × 21
   country  year donors   pop pop.dens   gdp gdp.lag health health.lag pubhealth
   <chr>   <dbl>  <dbl> <dbl>    <dbl> <dbl>   <dbl>  <dbl>      <dbl>     <dbl>
 1 Austra…    NA  NA    17065    0.220 16774   16591   1300       1224       4.8
 2 Austra…  1991  12.1  17284    0.223 17171   16774   1379       1300       5.4
 3 Austra…  1992  12.4  17495    0.226 17914   17171   1455       1379       5.4
 4 Austra…  1993  12.5  17667    0.228 18883   17914   1540       1455       5.4
 5 Austra…  1994  10.2  17855    0.231 19849   18883   1626       1540       5.4
 6 Austra…  1995  10.2  18072    0.233 21079   19849   1737       1626       5.5
 7 Austra…  1996  10.6  18311    0.237 21923   21079   1846       1737       5.6
 8 Austra…  1997  10.3  18518    0.239 22961   21923   1948       1846       5.7
 9 Austra…  1998  10.5  18711    0.242 24148   22961   2077       1948       5.9
10 Austra…  1999   8.67 18926    0.244 25445   24148   2231       2077       6.1
# ℹ 228 more rows
# ℹ 11 more variables: roads <dbl>, cerebvas <dbl>, assault <dbl>,
#   external <dbl>, txp.pop <dbl>, world <chr>, opt <chr>, consent.law <chr>,
#   consent.practice <chr>, consistent <chr>, ccode <chr>



A Plot’s Components



What we need our code to make

Data represented by visual elements;

like position, length, color, and size;

Each measured on some scale;

Each scale with a labeled guide;

With the plot itself also titled and labeled.



How does

ggplot
do this?



ggplot’s flow of action



Here’s the whole thing, start to finish

Flow of action



We’ll go through it step by step

Flow of action



ggplot’s flow of action

What we start with



ggplot’s flow of action

Where we’re going



ggplot’s flow of action

Core steps



ggplot’s flow of action

Optional steps



ggplot’s flow of action: required

Tidy data



ggplot’s flow of action: required

Aesthetic mappings



ggplot’s flow of action: required

Geom



Let’s go piece by
piece



Start with the data

gapminder

# A tibble: 1,704 × 6
   country     continent  year lifeExp      pop gdpPercap
   <fct>       <fct>     <int>   <dbl>    <int>     <dbl>
 1 Afghanistan Asia       1952    28.8  8425333      779.
 2 Afghanistan Asia       1957    30.3  9240934      821.
 3 Afghanistan Asia       1962    32.0 10267083      853.
 4 Afghanistan Asia       1967    34.0 11537966      836.
 5 Afghanistan Asia       1972    36.1 13079460      740.
 6 Afghanistan Asia       1977    38.4 14880372      786.
 7 Afghanistan Asia       1982    39.9 12881816      978.
 8 Afghanistan Asia       1987    40.8 13867957      852.
 9 Afghanistan Asia       1992    41.7 16317921      649.
10 Afghanistan Asia       1997    41.8 22227415      635.
# ℹ 1,694 more rows

dim(gapminder)

[1] 1704    6



Create a plot object

Data is the gapminder tibble.

p <- ggplot(data = gapminder)



Map variables to aesthetics

Tell ggplot the variables you want represented by visual elements on the

plot

p <- ggplot(data = gapminder,
            mapping = aes(x = gdpPercap,
                          y = lifeExp))



Map variables to aesthetics

The mapping = aes(...) call links variables to things you will see on

the plot.

x and y represent the quantities determining position on the x and y axes.

Other aesthetic mappings can include, e.g., color, shape, size, and

fill.



Mappings do not directly specify the
particular, e.g., colors, shapes, or
line styles that will appear on the
plot. Rather, they establish which

variables in the data will be
represented by which visible

elements on the plot.



p has data and mappings but no geom

This empty plot has no geoms.

p



Add a geom

A scatterplot of Life Expectancy vs GDP

p + geom_point() 



Try a different geom

A scatterplot of Life Expectancy vs GDP

p + geom_smooth() 



Build your plots layer by layer

Life Expectancy vs GDP, using a smoother.

p <- ggplot(data = gapminder,
            mapping = aes(x = gdpPercap,
                          y=lifeExp))
p + geom_smooth()



This process is additive

Life Expectancy vs GDP, using a smoother.

p <- ggplot(data = gapminder,
            mapping = aes(x = gdpPercap,
                          y=lifeExp))
p + geom_point() + geom_smooth()



This process is additive

p <- ggplot(data = gapminder,
            mapping = aes(x = gdpPercap,
                          y=lifeExp))



This process is additive

p <- ggplot(data = gapminder,
            mapping = aes(x = gdpPercap,
                          y=lifeExp))
p + geom_smooth()



This process is additive

p <- ggplot(data = gapminder,
            mapping = aes(x = gdpPercap,
                          y=lifeExp))
p + geom_smooth() +
  geom_point()



Every geom is a function

Functions take arguments

p <- ggplot(data = gapminder,
            mapping = aes(x = gdpPercap,
                          y = lifeExp))
p + geom_point() + 
  geom_smooth(method = "lm") 



Keep Layering

 p <- ggplot(data = gapminder,
             mapping = aes(x = gdpPercap,
                           y=lifeExp))



Keep Layering

 p <- ggplot(data = gapminder,
             mapping = aes(x = gdpPercap,
                           y=lifeExp))
p + geom_point()



Keep Layering

 p <- ggplot(data = gapminder,
             mapping = aes(x = gdpPercap,
                           y=lifeExp))
p + geom_point() +
    geom_smooth(method = "lm")



Keep Layering

 p <- ggplot(data = gapminder,
             mapping = aes(x = gdpPercap,
                           y=lifeExp))
p + geom_point() +
    geom_smooth(method = "lm") +
    scale_x_log10()



Fix the labels

p <- ggplot(data = gapminder,
            mapping = aes(x = gdpPercap,
                          y=lifeExp))



Fix the labels

p <- ggplot(data = gapminder,
            mapping = aes(x = gdpPercap,
                          y=lifeExp))
p + geom_point()



Fix the labels

p <- ggplot(data = gapminder,
            mapping = aes(x = gdpPercap,
                          y=lifeExp))
p + geom_point() +
    geom_smooth(method = "lm")



Fix the labels

p <- ggplot(data = gapminder,
            mapping = aes(x = gdpPercap,
                          y=lifeExp))
p + geom_point() +
    geom_smooth(method = "lm") +
    scale_x_log10(labels = scales::label_dollar



Add labels, title, and caption

p <- ggplot(data = gapminder, 
            mapping = aes(x = gdpPercap, 
                          y = lifeExp))
p + geom_point() + 
  geom_smooth(method = "lm") +
    scale_x_log10(labels = scales::label_dollar
    labs(x = "GDP Per Capita", 
         y = "Life Expectancy in Years",
         title = "Economic Growth and Life Expec
         subtitle = "Data points are country-yea
         caption = "Source: Gapminder.")



Mapping vs
Setting

your plot’s
aesthetics



“Can I change the color of the points?”

p <- ggplot(data = gapminder,
            mapping = aes(x = gdpPercap,
                          y = lifeExp,
                          color = "purple"))

## Put in an object for convenience
p_out <- p + geom_point() +
    geom_smooth(method = "loess") +
    scale_x_log10()



What has gone wrong here?

p_out



Try again

p <- ggplot(data = gapminder,
            mapping = aes(x = gdpPercap,
                          y = lifeExp))

## Put in an object for convenience
p_out <- p + geom_point(color = "purple") +
    geom_smooth(method = "loess") +
    scale_x_log10()



Try again

p_out



Geoms can take many arguments

Here we set color, size, and alpha. Meanwhile x and y are mapped.

We also give non-default values to some other arguments

p <- ggplot(data = gapminder,
            mapping = aes(x = gdpPercap,
                          y = lifeExp)) 
p_out <- p + geom_point(alpha = 0.3) +
    geom_smooth(color = "orange", 
                se = FALSE, 
                size = 8, 
                method = "lm") +
    scale_x_log10()



Geoms can take many arguments

p_out



alpha for overplotting

p <- ggplot(data = gapminder, 
            mapping = aes(x = gdpPercap, 
                          y = lifeExp))

  geom_smooth(method = "lm") +
    scale_x_log10(labels = scales::label_dollar
    labs(x = "GDP Per Capita", 
         y = "Life Expectancy in Years",
         title = "Economic Growth and Life Expec
         subtitle = "Data points are country-yea
         caption = "Source: Gapminder.")



Map or Set values
per geom



Geoms can take their own mappings

p <- ggplot(data = gapminder,
            mapping = aes(x = gdpPercap,
                          y = lifeExp,
                          color = continent,
                          fill = continent))



Geoms can take their own mappings

p <- ggplot(data = gapminder,
            mapping = aes(x = gdpPercap,
                          y = lifeExp,
                          color = continent,
                          fill = continent))
p + geom_point()



Geoms can take their own mappings

p <- ggplot(data = gapminder,
            mapping = aes(x = gdpPercap,
                          y = lifeExp,
                          color = continent,
                          fill = continent))
p + geom_point() +
    geom_smooth(method = "loess")



Geoms can take their own mappings

p <- ggplot(data = gapminder,
            mapping = aes(x = gdpPercap,
                          y = lifeExp,
                          color = continent,
                          fill = continent))
p + geom_point() +
    geom_smooth(method = "loess") +
    scale_x_log10(labels = scales::label_dollar())



Geoms can take their own mappings

p <- ggplot(data = gapminder,
            mapping = aes(x = gdpPercap,
                          y = lifeExp))



Geoms can take their own mappings

p <- ggplot(data = gapminder,
            mapping = aes(x = gdpPercap,
                          y = lifeExp))
p + geom_point(mapping = aes(color = continent))



Geoms can take their own mappings

p <- ggplot(data = gapminder,
            mapping = aes(x = gdpPercap,
                          y = lifeExp))
p + geom_point(mapping = aes(color = continent)) +
    geom_smooth(method = "loess")



Geoms can take their own mappings

p <- ggplot(data = gapminder,
            mapping = aes(x = gdpPercap,
                          y = lifeExp))
p + geom_point(mapping = aes(color = continent)) +
    geom_smooth(method = "loess") +
    scale_x_log10(labels = scales::label_dollar())



Geoms can take their own mappings

p <- ggplot(data = gapminder,
            mapping = aes(x = gdpPercap,
                          y = lifeExp))
p + geom_point(mapping = aes(color = continent)) +
    geom_smooth(method = "loess") +
    scale_x_log10(labels = scales::label_dollar())



Pay attention to
which scales and

guides are drawn,
and why



Guides and scales reflect aes()
mappings

mapping = aes(color = 
continent, fill = continent)



Guides and scales reflect aes()
mappings

mapping = aes(color = continent, fill = 
continent)

mapping = aes(color = continent)



Remember: Every
mapped variable

has a scale



Saving your work



Use ggsave()

## Save the most recent plot
ggsave(filename = "figures/my_figure.png")

## Use here() for more robust file paths
ggsave(filename = here("figures", "my_figure.png"))

## A plot object
p_out <- p + geom_point(mapping = aes(color = log(pop))) +
    scale_x_log10()

ggsave(filename = here("figures", "lifexp_vs_gdp_gradient.pdf"), 
       plot = p_out)

ggsave(here("figures", "lifexp_vs_gdp_gradient.png"), 
       plot = p_out, 
       width = 8, 
       height = 5)



In code chunks

Set options in any chunk:

#| fig-height: 8 
#| fig-width: 5
#| fig-show: "hold" 
#| fig-cap: "A caption"



Or for the whole document:

---
title: "My Document"
format: 
  html:
    fig-width: 8
    fig-height: 6
  pdf:
    fig-width: 7
    fig-height: 5
---



ggplot implements a

grammar of graphics



A grammar of graphics

The grammar is a set of rules for how to .kjh-lblueproduce graphics from

data, by mapping data to or representing it by geometric objects (like points

and lines) that have aesthetic attributes (like position, color, size, and

shape), together with further rules for transforming data if needed, for

adjusting scales and their guides, and for projecting results onto some

coordinate system.



Like other rules of syntax, the grammar

limits what you can validly say

but it doesn’t automatically make

what you say

sensible or meaningful



Grouped data and the group
aesthetic



Try to make a lineplot

p <- ggplot(data = gapminder,
            mapping = aes(x = year,
                       y = gdpPercap))



Try to make a lineplot

p <- ggplot(data = gapminder,
            mapping = aes(x = year,
                       y = gdpPercap)) +
  geom_line()



Try to make a lineplot

p <- ggplot(data = gapminder,
            mapping = aes(x = year,
                       y = gdpPercap)) +
  geom_line()

p



Try to make a lineplot

p <- ggplot(data = gapminder,
            mapping = aes(x = year,
                       y = gdpPercap))



Try to make a lineplot

p <- ggplot(data = gapminder,
            mapping = aes(x = year,
                       y = gdpPercap)) +
  geom_line(mapping = aes(group = country))



Try to make a lineplot

p <- ggplot(data = gapminder,
            mapping = aes(x = year,
                       y = gdpPercap)) +
  geom_line(mapping = aes(group = country))

p



Try to make a lineplot

p <- ggplot(data = gapminder,
            mapping = aes(x = year,
                       y = gdpPercap)) +
  geom_line(mapping = aes(group = country))

p



Facet the plot

gapminder # A tibble: 1,704 × 6
   country     continent  year lifeExp      pop 
gdpPercap
   <fct>       <fct>     <int>   <dbl>    <int> 
<dbl>
 1 Afghanistan Asia       1952    28.8  8425333 
779.
 2 Afghanistan Asia       1957    30.3  9240934 
821.
 3 Afghanistan Asia       1962    32.0 10267083 
853.
 4 Afghanistan Asia       1967    34.0 11537966 
836.
 5 Afghanistan Asia       1972    36.1 13079460 
740.
 6 Afghanistan Asia       1977    38.4 14880372 
786.
 7 Afghanistan Asia       1982    39.9 12881816 
978.

f



Facet the plot

gapminder |>
  ggplot(mapping =
           aes(x = year,
           y = gdpPercap))



Facet the plot

gapminder |>
  ggplot(mapping =
           aes(x = year,
           y = gdpPercap)) +
  geom_line(mapping = aes(group = country))



Facet the plot

gapminder |>
  ggplot(mapping =
           aes(x = year,
           y = gdpPercap)) +
  geom_line(mapping = aes(group = country)) +
  facet_wrap(~ continent)



Faceting is very powerful



Faceting

A facet is not a geom; it’s a way of arranging repeated geoms by some

additional variable

Facets use R’s “formula” syntax: facet_wrap(~ continent)

Read the ~ as “on” or “by”



Faceting

You can also use this syntax: facet_wrap(vars(continent))

This is newer, and consistent with other ways of referring to variables

within tidyverse functions.



Facets in action

p <- ggplot(data = gapminder,
            mapping = aes(x = year,
                          y = gdpPercap))

p_out <- p + geom_line(color="gray70", 
              mapping=aes(group = country)) +
    geom_smooth(size = 1.1,
                method = "loess",
                se = FALSE) +
    scale_y_log10(labels=scales::label_dollar()) +

    labs(x = "Year",
         y = "log GDP per capita",
         title = "GDP per capita on Five Continents",
         caption = "Data: Gapminder")    



A more polished faceted plot.



One-variable summaries



The midwest dataset

County-level census data for Midwestern U.S. Counties

midwest

# A tibble: 437 × 28
     PID county  state  area poptotal popdensity popwhite popblack popamerindian
   <int> <chr>   <chr> <dbl>    <int>      <dbl>    <int>    <int>         <int>
 1   561 ADAMS   IL    0.052    66090      1271.    63917     1702            98
 2   562 ALEXAN… IL    0.014    10626       759      7054     3496            19
 3   563 BOND    IL    0.022    14991       681.    14477      429            35
 4   564 BOONE   IL    0.017    30806      1812.    29344      127            46
 5   565 BROWN   IL    0.018     5836       324.     5264      547            14
 6   566 BUREAU  IL    0.05     35688       714.    35157       50            65
 7   567 CALHOUN IL    0.017     5322       313.     5298        1             8
 8   568 CARROLL IL    0.027    16805       622.    16519      111            30
 9   569 CASS    IL    0.024    13437       560.    13384       16             8
10   570 CHAMPA… IL    0.058   173025      2983.   146506    16559           331
# ℹ 427 more rows
# ℹ 19 more variables: popasian <int>, popother <int>, percwhite <dbl>,
#   percblack <dbl>, percamerindan <dbl>, percasian <dbl>, percother <dbl>,
#   popadults <int>, perchsd <dbl>, percollege <dbl>, percprof <dbl>,
#   poppovertyknown <int>, percpovertyknown <dbl>, percbelowpoverty <dbl>,
#   percchildbelowpovert <dbl>, percadultpoverty <dbl>,



stat_ functions behind the scenes

Here the default stat_ function for this geom has to make a choice. It is

p <- ggplot(data = midwest, 
            mapping = aes(x = area))

p + geom_histogram()

`stat_bin()` using `bins = 30`. Pick better 
value with `binwidth`.



stat_ functions behind the scenes

We can choose either the number of bins or the binwidth

p <- ggplot(data = midwest, 
            mapping = aes(x = area))

p + geom_histogram(bins = 10)



Compare two distributions

Here we do the whole thing in a pipeline using the pipe and the dplyr verb filter() to subset rows of the

data by some condition.

Experiment with leaving the position argument out, or changing it to "dodge".

## Two state codes
oh_wi <- c("OH", "WI")

midwest |> 
  filter(state %in% oh_wi) |> 
  ggplot(mapping = aes(x = percollege, 
                       fill = state)) + 
  geom_histogram(alpha = 0.5, 
                 position = "identity")



geom_density()

p <- ggplot(data = midwest, 
            mapping = aes(x = area))

p + geom_density()



geom_density()

p <- ggplot(data = midwest,
            mapping = aes(x = area, 
                          fill = state, 
                          color = state))
p + geom_density(alpha = 0.3)



geom_density()

ndensity here is not in our data! It’s computed. Histogram and density geoms have default statistics, but you

can ask them to do more. The after_stat functions can do this work for us.

midwest |>
  filter(state %in% oh_wi) |> 
  ggplot(mapping = aes(x = area,
                       fill = state, 
                       color = state)) + 

               alpha = 0.4)



Avoid counting up,

when necessary



Sometimes no counting is needed

Here we just have a summary table and want to plot a few numbers directly in a bar chart.

titanic

      fate    sex    n percent
1 perished   male 1364    62.0
2 perished female  126     5.7
3 survived   male  367    16.7
4 survived female  344    15.6



geom_bar() wants to count up

By default geom_bar() tries to count up data by category. (Really it’s the stat_count() function that does

this behind the scenes.) By saying stat="identity" we explicitly tell it not to do that. This also allows us to

use a y mapping. Normally this would be the result of the counting up.

p <- ggplot(data = titanic,
            mapping = aes(x = fate, 
                          y = percent, 
                          fill = sex))



geom_bar() stacks bars by default

Position arguments adjust whether the things drawn are placed on top of one another ("stack"), side-by-side

("dodge"), or taken as-is ("identity").

p <- ggplot(data = titanic,
            mapping = aes(x = fate, 
                          y = percent, 
                          fill = sex))
p + geom_bar(stat = "identity", 



A quick theme() adjustment

The theme() function controls the styling of parts of the plot that don’t belong to its “grammatical” structure.

That is, that are not contributing to directly representing data.

p <- ggplot(data = titanic,
            mapping = aes(x = fate, 
                          y = percent, 
                          fill = sex))
p + geom_bar(stat = "identity", 
             position = "dodge") +



For convenience, use geom_col()

geom_col() assumes stat = "identity" by default. It’s for when you want to directly plot a table of

values, rather than create a bar chart by summing over one varible categorized by another.

p <- ggplot(data = titanic,
            mapping = aes(x = fate, 
                          y = percent, 
                          fill = sex))

  theme(legend.position = "top")



Using geom_col() for thresholds

Data comparing U.S. average life expectancy to the rest of

the OECD average.

diff is difference in years with respect to the U.S.

hi_lo is a flag saying whether the OECD is above or below

the U.S.

oecd_sum

# A tibble: 57 × 5
# Groups:   year [57]
    year other   usa  diff hi_lo
   <int> <dbl> <dbl> <dbl> <chr>
 1  1960  68.6  69.9 1.30  Below
 2  1961  69.2  70.4 1.20  Below
 3  1962  68.9  70.2 1.30  Below
 4  1963  69.1  70   0.900 Below
 5  1964  69.5  70.3 0.800 Below
 6  1965  69.6  70.3 0.700 Below
 7  1966  69.9  70.3 0.400 Below
 8  1967  70.1  70.7 0.600 Below
 9  1968  70.1  70.4 0.300 Below
10  1969  70.1  70.6 0.5   Below
# ℹ 47 more rows



Using geom_col() for thresholds

geom_hline() doesn’t take any data argument. It just

draws a horizontal line with a given y-intercept.

x = NULL means “Don’t label the x-axis (not even with the

default value, the variable name).

p <- ggplot(data = oecd_sum, 
            mapping = aes(x = year, 
                          y = diff, 
                          fill = hi_lo))

p_out <- p + geom_col() + 

  guides(fill = "none") + 

       y = "Difference in Years", 
       title = "The U.S. Life Expectancy Ga
       subtitle = "Difference between U.S. 
       OECD average life expectancies, 1960
       caption = "Data: OECD.")



Using geom_col() for thresholds


