
04 — How ggplot Thinks
Kieran Healy

January 31, 2024

Load our libraries

library(here) # manage file paths
library(socviz) # data and some useful functions
library(tidyverse) # your friend and mine
library(gapminder) # some data

Nearly done with the scaffolding

✅ Thought about elements of visualization

✅ Gotten oriented to R and RStudio

✅ Knitted a document

✅ Written a bit of ggplot code

Nearly done with the scaffolding

✅ Thought about elements of visualization

✅ Gotten oriented to R and RStudio

✅ Knitted a document

✅ Written a bit of ggplot code

⬜ Get my data in to R

⬜ Make a plot with it

Reviewing the Problem Sets

Windows and Zip Files

Rendering a Project and watching it update

Strategies for debugging your code: a chunk at a

time, a step at a time

In the background

Things the columns in our table can be:
Words naming unordered categories: e.g. Asia, Europe, America

Words naming ordered categories: e.g. Elementary, High School, College; or Strongly Agree, Agree, Neutral,

Disagree, Strongly Disagree; etc.

Numbers that can take on just a quite limited range of (integer) values: e.g. number of children; years of

schooling; number of people in the household. These are very close to categorical variables as well, but are more

often counts.

Numbers that can take on many values in some range, depending on how precisely we measure them:

e.g. distance traveled to work; height in centimeters; number of computers sold per quarter; population size

Truly “continuous” measures are comparatively rare in social science; most often encountered with aggregate

quantities rather than individual ones. (Even things like “income” end up being measured with e.g. 10

categories.)

Feed ggplot tidy data

Tidy Data

What is tidy data?

Tidy data

What is tidy data?

Tidy data is in long format

Every column is a single variable

Grolemund & Wickham

Every row is a single observation

Grolemund & Wickham

Every cell is a single value

Grolemund & Wickham

Get your data into long format

Very, very often, the solution to some data-wrangling or data visualization

problem in a Tidyverse-focused workflow is:

Get your data into long format

Very, very often, the solution to some data-wrangling or data visualization

problem in a Tidyverse-focused workflow is:

First, get the data into long format
Then do the thing you want.

Untidy data exists for good reasons

Storing and printing data in long format entails a lot of repetition:

species island year bill

Adelie Biscoe 2007 38.32

Adelie Biscoe 2008 38.70

Adelie Biscoe 2009 39.69

Adelie Dream 2007 39.10

Adelie Dream 2008 38.19

Adelie Dream 2009 38.15

Adelie Torgersen 2007 38.80

Adelie Torgersen 2008 38.77

Adelie Torgersen 2009 39.31

Chinstrap Dream 2007 48.72

Chinstrap Dream 2008 48.70

Chinstrap Dream 2009 49 05

library(palmerpenguins)
penguins |>
 group_by(species, island, year) |>
 summarize(bill = round(mean(bill_length_mm, na.rm = TRUE),2)) |>
 knitr::kable()

Untidy data exists for good reasons

A wide format is easier and more efficient to read in print:

species island 2007 2008 2009

Adelie Biscoe 38.32 38.70 39.69

Adelie Dream 39.10 38.19 38.15

Adelie Torgersen 38.80 38.77 39.31

Chinstrap Dream 48.72 48.70 49.05

Gentoo Biscoe 47.01 46.94 48.50

penguins |>
 group_by(species, island, year) |>
 summarize(bill = round(mean(bill_length_mm, na.rm = TRUE), 2)) |>
 pivot_wider(names_from = year, values_from = bill) |>
 knitr::kable()

Untidy data exists for good reasons

A wide format is easier and more efficient to read in print:

species year Biscoe Dream Torgersen

Adelie 2007 38.32 39.10 38.80

Adelie 2008 38.70 38.19 38.77

Adelie 2009 39.69 38.15 39.31

Chinstrap 2007 NA 48.72 NA

Chinstrap 2008 NA 48.70 NA

Chinstrap 2009 NA 49.05 NA

Gentoo 2007 47.01 NA NA

Gentoo 2008 46.94 NA NA

Gentoo 2009 48.50 NA NA

penguins |>
 group_by(species, year, island) |>
 summarize(bill = round(mean(bill_length_mm, na.rm = TRUE), 2)) |>
 pivot_wider(names_from = island, values_from = bill) |>
 knitr::kable()

But also for less good reasons

Spot the untidiness

But also for less good reasons

😠 More than one header row

😡 Mixed data types in some

columns

💀 Color and typography used

to encode variables and their

values

Spot the untidiness

Fix it before you import it

Prevention is better than cure!

An excellent article by Karl Broman and Kara Woo:

Broman KW, Woo KH (2018) .” The American Statistician 78:2–10

Data organization in spreadsheets

“Data Organization in Spreadsheets”

doi:10.1080/00031305.2017.1375989

The most common tidyr operation

Pivoting from wide to long:

Here, a “Level of Schooling Attained” variable is spread across the

columns, from elem4 to coll4. We need a key column called “education”

with the various levels of schooling, and a corresponding value column

containing the counts.

edu

A tibble: 366 × 11
 age sex year total elem4 elem8 hs3 hs4 coll3 coll4 median
 <chr> <chr> <int> <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 25-34 Male 2016 21845 116 468 1427 6386 6015 7432 NA
 2 25-34 Male 2015 21427 166 488 1584 6198 5920 7071 NA
 3 25-34 Male 2014 21217 151 512 1611 6323 5910 6710 NA
 4 25-34 Male 2013 20816 161 582 1747 6058 5749 6519 NA
 5 25-34 Male 2012 20464 161 579 1707 6127 5619 6270 NA
 6 25-34 Male 2011 20985 190 657 1791 6444 5750 6151 NA
 7 25-34 Male 2010 20689 186 641 1866 6458 5587 5951 NA
 8 25-34 Male 2009 20440 184 695 1806 6495 5508 5752 NA
 9 25-34 Male 2008 20210 172 714 1874 6356 5277 5816 NA
10 25-34 Male 2007 20024 246 757 1930 6361 5137 5593 NA
ℹ 356 more rows

Wide to long with pivot_longer()

We’re going to put the columns elem4:coll4 into a new column,

creating a new categorical measure named education. The numbers

currently under each column will become a new value column

corresponding to that level of education.

edu |>
 pivot_longer(elem4:coll4, names_to = "education")

A tibble: 2,196 × 7
 age sex year total median education value
 <chr> <chr> <int> <int> <dbl> <chr> <dbl>
 1 25-34 Male 2016 21845 NA elem4 116
 2 25-34 Male 2016 21845 NA elem8 468
 3 25-34 Male 2016 21845 NA hs3 1427
 4 25-34 Male 2016 21845 NA hs4 6386
 5 25-34 Male 2016 21845 NA coll3 6015
 6 25-34 Male 2016 21845 NA coll4 7432
 7 25-34 Male 2015 21427 NA elem4 166
 8 25-34 Male 2015 21427 NA elem8 488
 9 25-34 Male 2015 21427 NA hs3 1584
10 25-34 Male 2015 21427 NA hs4 6198
ℹ 2,186 more rows

Wide to long with pivot_longer()

We can name the value column to whatever we like. Here it’s a number of

people.

edu |>
 pivot_longer(elem4:coll4,
 names_to = "education",
 values_to = "n")

A tibble: 2,196 × 7
 age sex year total median education n
 <chr> <chr> <int> <int> <dbl> <chr> <dbl>
 1 25-34 Male 2016 21845 NA elem4 116
 2 25-34 Male 2016 21845 NA elem8 468
 3 25-34 Male 2016 21845 NA hs3 1427
 4 25-34 Male 2016 21845 NA hs4 6386
 5 25-34 Male 2016 21845 NA coll3 6015
 6 25-34 Male 2016 21845 NA coll4 7432
 7 25-34 Male 2015 21427 NA elem4 166
 8 25-34 Male 2015 21427 NA elem8 488
 9 25-34 Male 2015 21427 NA hs3 1584
10 25-34 Male 2015 21427 NA hs4 6198
ℹ 2,186 more rows

How to get your own data

into R

Reading in CSV files

Base R has read.csv()

Corresponding tidyverse “underscored” version: read_csv().

It is pickier and more talkative than the Base R version. Use it instead.

Where’s my data? Using here()

If we’re loading a file, it’s coming from somewhere.

If it’s a file on our hard drive somewhere, we will need to interact with the file system. We should try to do this

in a way that avoids absolute file paths.

We should also do it in a way that is platform independent.

This makes it easier to share your work, move it around, etc. Projects should be self-contained.

This is not portable!
df <- read_csv("/Users/kjhealy/Documents/data/misc/project/data/mydata.csv")

Where’s my data? Using here()

The here package, and here() function builds paths relative to the top

level of your R project.

here() # this path will be different for you

[1] "/Users/kjhealy/Documents/courses/vsd"

Where’s the data? Using here()

This seminar’s files all live in an RStudio project. It looks like this:

I want to load files from the data folder, but I also want you to be able to

load them. I’m writing this from somewhere deep in the slides folder,

but you won’t be there

/Users/kjhealy/Documents/courses/vsd
├── 00_dummy_files
├── R
├── README.md
├── README.qmd
├── _extensions
├── _freeze
├── _quarto.yml
├── _site
├── _targets
├── _targets.R
├── _variables.yml
├── about
├── assignment
├── content
├── data
├── deploy.sh
├── example
├── files
├── grades
├── html
├── images
├── index.html
├── index.qmd
├── merm.txt
├── projects
├── renv
├

Where’s the data? Using here()

So:

Load the file relative to the path from the top of the project, without separators, etc
organs <- read_csv(file = here("files", "data", "organdonation.csv"))

Where’s the data? Using here()

And there it is.

organs

A tibble: 238 × 21
 country year donors pop pop.dens gdp gdp.lag health health.lag pubhealth
 <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 Austra… NA NA 17065 0.220 16774 16591 1300 1224 4.8
 2 Austra… 1991 12.1 17284 0.223 17171 16774 1379 1300 5.4
 3 Austra… 1992 12.4 17495 0.226 17914 17171 1455 1379 5.4
 4 Austra… 1993 12.5 17667 0.228 18883 17914 1540 1455 5.4
 5 Austra… 1994 10.2 17855 0.231 19849 18883 1626 1540 5.4
 6 Austra… 1995 10.2 18072 0.233 21079 19849 1737 1626 5.5
 7 Austra… 1996 10.6 18311 0.237 21923 21079 1846 1737 5.6
 8 Austra… 1997 10.3 18518 0.239 22961 21923 1948 1846 5.7
 9 Austra… 1998 10.5 18711 0.242 24148 22961 2077 1948 5.9
10 Austra… 1999 8.67 18926 0.244 25445 24148 2231 2077 6.1
ℹ 228 more rows
ℹ 11 more variables: roads <dbl>, cerebvas <dbl>, assault <dbl>,
external <dbl>, txp.pop <dbl>, world <chr>, opt <chr>, consent.law <chr>,
consent.practice <chr>, consistent <chr>, ccode <chr>

read_csv() has variants

read_csv() Field separator is a comma: ,

read_csv2() Field separator is a semicolon: ;

Both are special cases of read_delim()

organs <- read_csv(file = here("files", "data", "organdonation.csv"))

Example only
my_data <- read_csv2(file = here("data", "my_euro_file.csv))

Other species are also catered to

read_tsv() Tab separated.

read_fwf() Fixed-width files.

read_log() Log files (i.e. computer log files).

read_lines() Just read in lines, without trying to parse them.

Also often useful …

read_table()

For data that’s separated by one (or more) columns of space.

And for foreign file formats …

The haven package provides

read_dta() Stata

read_spss() SPSS

read_sas() SAS

read_xpt() SAS Transport

Make these functions available with library(haven)

You can read files remotely, too

You can give these functions local files, or they can also be pointed at URLs.

Compressed files (.zip, .tar.gz) will be automatically uncompressed.

(Be careful what you download from remote locations!)

organ_remote <- read_csv("http://kjhealy.co/organdonation.csv")
organ_remote

A tibble: 238 × 21
 country year donors pop pop.dens gdp gdp.lag health health.lag pubhealth
 <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 Austra… NA NA 17065 0.220 16774 16591 1300 1224 4.8
 2 Austra… 1991 12.1 17284 0.223 17171 16774 1379 1300 5.4
 3 Austra… 1992 12.4 17495 0.226 17914 17171 1455 1379 5.4
 4 Austra… 1993 12.5 17667 0.228 18883 17914 1540 1455 5.4
 5 Austra… 1994 10.2 17855 0.231 19849 18883 1626 1540 5.4
 6 Austra… 1995 10.2 18072 0.233 21079 19849 1737 1626 5.5
 7 Austra… 1996 10.6 18311 0.237 21923 21079 1846 1737 5.6
 8 Austra… 1997 10.3 18518 0.239 22961 21923 1948 1846 5.7
 9 Austra… 1998 10.5 18711 0.242 24148 22961 2077 1948 5.9
10 Austra… 1999 8.67 18926 0.244 25445 24148 2231 2077 6.1
ℹ 228 more rows
ℹ 11 more variables: roads <dbl>, cerebvas <dbl>, assault <dbl>,
external <dbl>, txp.pop <dbl>, world <chr>, opt <chr>, consent.law <chr>,
consent.practice <chr>, consistent <chr>, ccode <chr>

A Plot’s Components

What we need our code to make

Data represented by visual elements;

like position, length, color, and size;

Each measured on some scale;

Each scale with a labeled guide;

With the plot itself also titled and labeled.

How does

ggplot
do this?

ggplot’s flow of action

Here’s the whole thing, start to finish

Flow of action

We’ll go through it step by step

Flow of action

ggplot’s flow of action

What we start with

ggplot’s flow of action

Where we’re going

ggplot’s flow of action

Core steps

ggplot’s flow of action

Optional steps

ggplot’s flow of action: required

Tidy data

ggplot’s flow of action: required

Aesthetic mappings

ggplot’s flow of action: required

Geom

Let’s go piece by
piece

Start with the data

gapminder

A tibble: 1,704 × 6
 country continent year lifeExp pop gdpPercap
 <fct> <fct> <int> <dbl> <int> <dbl>
 1 Afghanistan Asia 1952 28.8 8425333 779.
 2 Afghanistan Asia 1957 30.3 9240934 821.
 3 Afghanistan Asia 1962 32.0 10267083 853.
 4 Afghanistan Asia 1967 34.0 11537966 836.
 5 Afghanistan Asia 1972 36.1 13079460 740.
 6 Afghanistan Asia 1977 38.4 14880372 786.
 7 Afghanistan Asia 1982 39.9 12881816 978.
 8 Afghanistan Asia 1987 40.8 13867957 852.
 9 Afghanistan Asia 1992 41.7 16317921 649.
10 Afghanistan Asia 1997 41.8 22227415 635.
ℹ 1,694 more rows

dim(gapminder)

[1] 1704 6

Create a plot object

Data is the gapminder tibble.

p <- ggplot(data = gapminder)

Map variables to aesthetics

Tell ggplot the variables you want represented by visual elements on the

plot

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp))

Map variables to aesthetics

The mapping = aes(...) call links variables to things you will see on

the plot.

x and y represent the quantities determining position on the x and y axes.

Other aesthetic mappings can include, e.g., color, shape, size, and

fill.

Mappings do not directly specify the
particular, e.g., colors, shapes, or
line styles that will appear on the
plot. Rather, they establish which

variables in the data will be
represented by which visible

elements on the plot.

p has data and mappings but no geom

This empty plot has no geoms.

p

Add a geom

A scatterplot of Life Expectancy vs GDP

p + geom_point()

Try a different geom

A scatterplot of Life Expectancy vs GDP

p + geom_smooth()

Build your plots layer by layer

Life Expectancy vs GDP, using a smoother.

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y=lifeExp))
p + geom_smooth()

This process is additive

Life Expectancy vs GDP, using a smoother.

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y=lifeExp))
p + geom_point() + geom_smooth()

This process is additive

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y=lifeExp))

This process is additive

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y=lifeExp))
p + geom_smooth()

This process is additive

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y=lifeExp))
p + geom_smooth() +
 geom_point()

Every geom is a function

Functions take arguments

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp))
p + geom_point() +
 geom_smooth(method = "lm")

Keep Layering

 p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y=lifeExp))

Keep Layering

 p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y=lifeExp))
p + geom_point()

Keep Layering

 p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y=lifeExp))
p + geom_point() +
 geom_smooth(method = "lm")

Keep Layering

 p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y=lifeExp))
p + geom_point() +
 geom_smooth(method = "lm") +
 scale_x_log10()

Fix the labels

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y=lifeExp))

Fix the labels

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y=lifeExp))
p + geom_point()

Fix the labels

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y=lifeExp))
p + geom_point() +
 geom_smooth(method = "lm")

Fix the labels

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y=lifeExp))
p + geom_point() +
 geom_smooth(method = "lm") +
 scale_x_log10(labels = scales::label_dollar

Add labels, title, and caption

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp))
p + geom_point() +
 geom_smooth(method = "lm") +
 scale_x_log10(labels = scales::label_dollar
 labs(x = "GDP Per Capita",
 y = "Life Expectancy in Years",
 title = "Economic Growth and Life Expec
 subtitle = "Data points are country-yea
 caption = "Source: Gapminder.")

Mapping vs
Setting

your plot’s
aesthetics

“Can I change the color of the points?”

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp,
 color = "purple"))

Put in an object for convenience
p_out <- p + geom_point() +
 geom_smooth(method = "loess") +
 scale_x_log10()

What has gone wrong here?

p_out

Try again

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp))

Put in an object for convenience
p_out <- p + geom_point(color = "purple") +
 geom_smooth(method = "loess") +
 scale_x_log10()

Try again

p_out

Geoms can take many arguments

Here we set color, size, and alpha. Meanwhile x and y are mapped.

We also give non-default values to some other arguments

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp))
p_out <- p + geom_point(alpha = 0.3) +
 geom_smooth(color = "orange",
 se = FALSE,
 size = 8,
 method = "lm") +
 scale_x_log10()

Geoms can take many arguments

p_out

alpha for overplotting

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp))

 geom_smooth(method = "lm") +
 scale_x_log10(labels = scales::label_dollar
 labs(x = "GDP Per Capita",
 y = "Life Expectancy in Years",
 title = "Economic Growth and Life Expec
 subtitle = "Data points are country-yea
 caption = "Source: Gapminder.")

Map or Set values
per geom

Geoms can take their own mappings

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp,
 color = continent,
 fill = continent))

Geoms can take their own mappings

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp,
 color = continent,
 fill = continent))
p + geom_point()

Geoms can take their own mappings

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp,
 color = continent,
 fill = continent))
p + geom_point() +
 geom_smooth(method = "loess")

Geoms can take their own mappings

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp,
 color = continent,
 fill = continent))
p + geom_point() +
 geom_smooth(method = "loess") +
 scale_x_log10(labels = scales::label_dollar())

Geoms can take their own mappings

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp))

Geoms can take their own mappings

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp))
p + geom_point(mapping = aes(color = continent))

Geoms can take their own mappings

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp))
p + geom_point(mapping = aes(color = continent)) +
 geom_smooth(method = "loess")

Geoms can take their own mappings

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp))
p + geom_point(mapping = aes(color = continent)) +
 geom_smooth(method = "loess") +
 scale_x_log10(labels = scales::label_dollar())

Geoms can take their own mappings

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp))
p + geom_point(mapping = aes(color = continent)) +
 geom_smooth(method = "loess") +
 scale_x_log10(labels = scales::label_dollar())

Pay attention to
which scales and

guides are drawn,
and why

Guides and scales reflect aes()
mappings

mapping = aes(color =
continent, fill = continent)

Guides and scales reflect aes()
mappings

mapping = aes(color = continent, fill =
continent)

mapping = aes(color = continent)

Remember: Every
mapped variable

has a scale

Saving your work

Use ggsave()

Save the most recent plot
ggsave(filename = "figures/my_figure.png")

Use here() for more robust file paths
ggsave(filename = here("figures", "my_figure.png"))

A plot object
p_out <- p + geom_point(mapping = aes(color = log(pop))) +
 scale_x_log10()

ggsave(filename = here("figures", "lifexp_vs_gdp_gradient.pdf"),
 plot = p_out)

ggsave(here("figures", "lifexp_vs_gdp_gradient.png"),
 plot = p_out,
 width = 8,
 height = 5)

In code chunks

Set options in any chunk:

#| fig-height: 8
#| fig-width: 5
#| fig-show: "hold"
#| fig-cap: "A caption"

Or for the whole document:

title: "My Document"
format:
 html:
 fig-width: 8
 fig-height: 6
 pdf:
 fig-width: 7
 fig-height: 5

ggplot implements a

grammar of graphics

A grammar of graphics

The grammar is a set of rules for how to .kjh-lblueproduce graphics from

data, by mapping data to or representing it by geometric objects (like points

and lines) that have aesthetic attributes (like position, color, size, and

shape), together with further rules for transforming data if needed, for

adjusting scales and their guides, and for projecting results onto some

coordinate system.

Like other rules of syntax, the grammar

limits what you can validly say

but it doesn’t automatically make

what you say

sensible or meaningful

Grouped data and the group
aesthetic

Try to make a lineplot

p <- ggplot(data = gapminder,
 mapping = aes(x = year,
 y = gdpPercap))

Try to make a lineplot

p <- ggplot(data = gapminder,
 mapping = aes(x = year,
 y = gdpPercap)) +
 geom_line()

Try to make a lineplot

p <- ggplot(data = gapminder,
 mapping = aes(x = year,
 y = gdpPercap)) +
 geom_line()

p

Try to make a lineplot

p <- ggplot(data = gapminder,
 mapping = aes(x = year,
 y = gdpPercap))

Try to make a lineplot

p <- ggplot(data = gapminder,
 mapping = aes(x = year,
 y = gdpPercap)) +
 geom_line(mapping = aes(group = country))

Try to make a lineplot

p <- ggplot(data = gapminder,
 mapping = aes(x = year,
 y = gdpPercap)) +
 geom_line(mapping = aes(group = country))

p

Try to make a lineplot

p <- ggplot(data = gapminder,
 mapping = aes(x = year,
 y = gdpPercap)) +
 geom_line(mapping = aes(group = country))

p

Facet the plot

gapminder # A tibble: 1,704 × 6
 country continent year lifeExp pop
gdpPercap
 <fct> <fct> <int> <dbl> <int>
<dbl>
 1 Afghanistan Asia 1952 28.8 8425333
779.
 2 Afghanistan Asia 1957 30.3 9240934
821.
 3 Afghanistan Asia 1962 32.0 10267083
853.
 4 Afghanistan Asia 1967 34.0 11537966
836.
 5 Afghanistan Asia 1972 36.1 13079460
740.
 6 Afghanistan Asia 1977 38.4 14880372
786.
 7 Afghanistan Asia 1982 39.9 12881816
978.

f

Facet the plot

gapminder |>
 ggplot(mapping =
 aes(x = year,
 y = gdpPercap))

Facet the plot

gapminder |>
 ggplot(mapping =
 aes(x = year,
 y = gdpPercap)) +
 geom_line(mapping = aes(group = country))

Facet the plot

gapminder |>
 ggplot(mapping =
 aes(x = year,
 y = gdpPercap)) +
 geom_line(mapping = aes(group = country)) +
 facet_wrap(~ continent)

Faceting is very powerful

Faceting

A facet is not a geom; it’s a way of arranging repeated geoms by some

additional variable

Facets use R’s “formula” syntax: facet_wrap(~ continent)

Read the ~ as “on” or “by”

Faceting

You can also use this syntax: facet_wrap(vars(continent))

This is newer, and consistent with other ways of referring to variables

within tidyverse functions.

Facets in action

p <- ggplot(data = gapminder,
 mapping = aes(x = year,
 y = gdpPercap))

p_out <- p + geom_line(color="gray70",
 mapping=aes(group = country)) +
 geom_smooth(size = 1.1,
 method = "loess",
 se = FALSE) +
 scale_y_log10(labels=scales::label_dollar()) +

 labs(x = "Year",
 y = "log GDP per capita",
 title = "GDP per capita on Five Continents",
 caption = "Data: Gapminder")

A more polished faceted plot.

One-variable summaries

The midwest dataset

County-level census data for Midwestern U.S. Counties

midwest

A tibble: 437 × 28
 PID county state area poptotal popdensity popwhite popblack popamerindian
 <int> <chr> <chr> <dbl> <int> <dbl> <int> <int> <int>
 1 561 ADAMS IL 0.052 66090 1271. 63917 1702 98
 2 562 ALEXAN… IL 0.014 10626 759 7054 3496 19
 3 563 BOND IL 0.022 14991 681. 14477 429 35
 4 564 BOONE IL 0.017 30806 1812. 29344 127 46
 5 565 BROWN IL 0.018 5836 324. 5264 547 14
 6 566 BUREAU IL 0.05 35688 714. 35157 50 65
 7 567 CALHOUN IL 0.017 5322 313. 5298 1 8
 8 568 CARROLL IL 0.027 16805 622. 16519 111 30
 9 569 CASS IL 0.024 13437 560. 13384 16 8
10 570 CHAMPA… IL 0.058 173025 2983. 146506 16559 331
ℹ 427 more rows
ℹ 19 more variables: popasian <int>, popother <int>, percwhite <dbl>,
percblack <dbl>, percamerindan <dbl>, percasian <dbl>, percother <dbl>,
popadults <int>, perchsd <dbl>, percollege <dbl>, percprof <dbl>,
poppovertyknown <int>, percpovertyknown <dbl>, percbelowpoverty <dbl>,
percchildbelowpovert <dbl>, percadultpoverty <dbl>,

stat_ functions behind the scenes

Here the default stat_ function for this geom has to make a choice. It is

p <- ggplot(data = midwest,
 mapping = aes(x = area))

p + geom_histogram()

`stat_bin()` using `bins = 30`. Pick better
value with `binwidth`.

stat_ functions behind the scenes

We can choose either the number of bins or the binwidth

p <- ggplot(data = midwest,
 mapping = aes(x = area))

p + geom_histogram(bins = 10)

Compare two distributions

Here we do the whole thing in a pipeline using the pipe and the dplyr verb filter() to subset rows of the

data by some condition.

Experiment with leaving the position argument out, or changing it to "dodge".

Two state codes
oh_wi <- c("OH", "WI")

midwest |>
 filter(state %in% oh_wi) |>
 ggplot(mapping = aes(x = percollege,
 fill = state)) +
 geom_histogram(alpha = 0.5,
 position = "identity")

geom_density()

p <- ggplot(data = midwest,
 mapping = aes(x = area))

p + geom_density()

geom_density()

p <- ggplot(data = midwest,
 mapping = aes(x = area,
 fill = state,
 color = state))
p + geom_density(alpha = 0.3)

geom_density()

ndensity here is not in our data! It’s computed. Histogram and density geoms have default statistics, but you

can ask them to do more. The after_stat functions can do this work for us.

midwest |>
 filter(state %in% oh_wi) |>
 ggplot(mapping = aes(x = area,
 fill = state,
 color = state)) +

 alpha = 0.4)

Avoid counting up,

when necessary

Sometimes no counting is needed

Here we just have a summary table and want to plot a few numbers directly in a bar chart.

titanic

 fate sex n percent
1 perished male 1364 62.0
2 perished female 126 5.7
3 survived male 367 16.7
4 survived female 344 15.6

geom_bar() wants to count up

By default geom_bar() tries to count up data by category. (Really it’s the stat_count() function that does

this behind the scenes.) By saying stat="identity" we explicitly tell it not to do that. This also allows us to

use a y mapping. Normally this would be the result of the counting up.

p <- ggplot(data = titanic,
 mapping = aes(x = fate,
 y = percent,
 fill = sex))

geom_bar() stacks bars by default

Position arguments adjust whether the things drawn are placed on top of one another ("stack"), side-by-side

("dodge"), or taken as-is ("identity").

p <- ggplot(data = titanic,
 mapping = aes(x = fate,
 y = percent,
 fill = sex))
p + geom_bar(stat = "identity",

A quick theme() adjustment

The theme() function controls the styling of parts of the plot that don’t belong to its “grammatical” structure.

That is, that are not contributing to directly representing data.

p <- ggplot(data = titanic,
 mapping = aes(x = fate,
 y = percent,
 fill = sex))
p + geom_bar(stat = "identity",
 position = "dodge") +

For convenience, use geom_col()

geom_col() assumes stat = "identity" by default. It’s for when you want to directly plot a table of

values, rather than create a bar chart by summing over one varible categorized by another.

p <- ggplot(data = titanic,
 mapping = aes(x = fate,
 y = percent,
 fill = sex))

 theme(legend.position = "top")

Using geom_col() for thresholds

Data comparing U.S. average life expectancy to the rest of

the OECD average.

diff is difference in years with respect to the U.S.

hi_lo is a flag saying whether the OECD is above or below

the U.S.

oecd_sum

A tibble: 57 × 5
Groups: year [57]
 year other usa diff hi_lo
 <int> <dbl> <dbl> <dbl> <chr>
 1 1960 68.6 69.9 1.30 Below
 2 1961 69.2 70.4 1.20 Below
 3 1962 68.9 70.2 1.30 Below
 4 1963 69.1 70 0.900 Below
 5 1964 69.5 70.3 0.800 Below
 6 1965 69.6 70.3 0.700 Below
 7 1966 69.9 70.3 0.400 Below
 8 1967 70.1 70.7 0.600 Below
 9 1968 70.1 70.4 0.300 Below
10 1969 70.1 70.6 0.5 Below
ℹ 47 more rows

Using geom_col() for thresholds

geom_hline() doesn’t take any data argument. It just

draws a horizontal line with a given y-intercept.

x = NULL means “Don’t label the x-axis (not even with the

default value, the variable name).

p <- ggplot(data = oecd_sum,
 mapping = aes(x = year,
 y = diff,
 fill = hi_lo))

p_out <- p + geom_col() +

 guides(fill = "none") +

 y = "Difference in Years",
 title = "The U.S. Life Expectancy Ga
 subtitle = "Difference between U.S.
 OECD average life expectancies, 1960
 caption = "Data: OECD.")

Using geom_col() for thresholds

