04 — How ggplot Thinks

Kieran Healy
Januar y 31,2024

L.oad our libraries

library(here)
library(socviz)
library(tidyverse)
library(gapminder)

Nearly done with the scaffolding

Thought about elements of visualization
Gotten oriented to R and RStudio
Knitted a document

Written a bit of ggplot code

Nearly done with the scaffolding

Thought about elements of visualization
Gotten oriented to R and RStudio
Knitted a document
Written a bit of ggplot code

Get mydataintoR

Make a plot with it

Reviewing the Problem Sets

Windows and Zip Files

Rendering a Project and watching it update

Strategies for debugging your code: a chunk at a
time, a step at a time

In the background

Things the columns in our table can be:

Words naming unordered categories: e.g. Asia, Europe, America

Words naming ordered categories: e.g. Elementary, High School, College; or Strongly Agree, Agree, Neutral,
Disagree, Strongly Disagree; etc.

Numbers that can take on just a quite limited range of (integer) values: e.g. number of children; years of
schooling; number of people in the household. These are very close to categorical variables as well, but are more
often counts.

Numbers that can take on many values in some range, depending on how precisely we measure them:
e.g. distance traveled to work; height in centimeters; number of computers sold per quarter; population size

Truly “continuous” measures are comparatively rare in social science; most often encountered with aggregate
quantities rather than individual ones. (Even things like “income” end up being measured with e.g. 10
categories.)

Ti1dy Data

Tidy data

lifexp nop confinent

lifexp nop confinent

Tidy data is in long format

Every column is a single variable

variables

Grolemund & Wickham

Every row is a single observation

observations

Grolemund & Wickham

(eb)
-
)
(19)
>~
(b,
—
(@p)
c
n puf
(/s
(4]
(/o
n
..u
L
(&
)
=
(¢b)
>
L

000000

O00000 3
000000

000000

valu

Get your data into long format

Very, very often, the solution to some data-wrangling or data visualization
problem in a Tidyverse-focused workflow is:

Get your data into long format

Very, very often, the solution to some data-wrangling or data visualization
problem in a Tidyverse-focused workflow is:

First, get the data into long format
Then do the thing you want.

library(palmerpenguins)
penguins D

summarize(bill
knitr:: kable()

group_by(species, island, year) D

round(mean(bill_length_mm, na.rm

TRUE),2)) D

Untidy data exists for good reasons

Storing and printing data in long format entails a lot of repetition:

species island year bill
Adelie Biscoe 2007 38.32
Adelie Biscoe 2008 38.70
Adelie Biscoe 2009 39.69
Adelie Dream 2007 39.10
Adelie Dream 2008 38.19
Adelie Dream 2009 38.15
Adelie Torgersen 2007 38.80
Adelie Torgersen 2008 38.77
Adelie Torgersen 2009 39.31
Chinstrap Dream 2007 48.72
Chinstrap Dream 2008 48.70
PCPharmetrrnarn Draarsa oNnNo A0 NER

Untidy data exists for good reasons

penguins D
group_by(species, island, year) D
round(mean(bill_length_mm, na.rm = TRUE), 2)) D

summarize(bill
pivot_wider (names_from = year, values_from = bill) D
knitr :: kable()

A wide format is easier and more efficient to read in print:

island 2007 2008 2009
Biscoe 38.32 38.70 39.69
Dream 39.10 3819 38.15
Torgersen 38.80 38.77 39.31
Chinstrap Dream 4872 48.70 49.05
Biscoe 47.01 46.94 48.50

Untidy data exists for good reasons

A wide format is easier and more efficient to read in print:

penguins D
group_by(species, year, island) D

summarize(bill = round(mean(bill_length_mm, na.rm = TRUE), 2)) D
pivot_wider (names_from = island, values_from = bill) D
knitr :: kable()

species year Biscoe Dream Torgersen
Adelie 2007 38.32 39.10 38.80
Adelie 2008 38.70 38.19 38.77
Adelie 2009 39.69 38.15 39.31
Chinstrap 2007 NA 4872 NA
Chinstrap 2008 NA 48.70 NA
Chinstrap 2009 NA 49.05 NA
Gentoo 2007 47.01 NA NA
Gentoo 2008 46.94 NA NA

Gentoo 2009 48.50 NA NA

But also for less good reasons

State
A B @ D E F G H 1 J K L M N 4> P Q
2018 Cook Other Dem 2016 Clinton Swing vs. Raw Votes

State CD# PVIScore 2018 Winner Party Dem Votes GOP Votes Votes Dem % GOP % Other % Margin Margin 2016 Prez vs.2016 Final?
New House Breakdown: 235D, 199R, D 60,619,428 50,896,244 53.4% 44.8% 8.6% 2.1% 6.5% 83.3%
Compiled by: David Wasserman & Ally Flinn, Cook Political Report. @ Redistrict/@ CookPolitical. /talics denotes freshman, Bold denotes party change.
Alabama 1 R+15 Bradley Byrne R 89,226 153,228 36.8% 63.2% -26.4% -29.2% 2.8% 79.3% X
Alabama 2 R+16 Martha Roby R 86,931 138,879 38.4% 61.4% -23.0% -31.7% 8.7% 78.7% X
Alabama 3 R+16 Mike Rogers R 83,996 147,770 36.2% 63.7% -27.5% -33.0% 5.5% 79.6% X
Alabama 4 R+30 Robert Aderholt R 46,492 184,255 20.1% 79.8% -59.6% -62.5% 2.9% 78.9% X
Alabama 5 R+18 Mo Brooks R 101,388 159,063 38.9% 61.0% -22.1% -32.9% 10.8% 82.8% X
Alabama 6 R+26 Gary Palmer R 85,644 192,542 30.8% 69.2% -38.4% -43.8% 5.4% 82.8% X
Alabama 7 D+20 Terri Sewell D 185,010 0 97.8% 0.0% 97.8% 41.2% N/A 64.2% X
Alaska AL R+9 Don Young R 131,199 149,779 46.5% 53.1% -6.6% -14.7% 8.1% 88.6% X
Arizona 1 R+2 Tom O'Halleran D 143,240 122,784 53.8% 46.1% 7.7% -1.1% 8.8% 92.0% X
Arizona 2 R+1 Ann Kirkpatrick D 161,000 133,102 54.7% 45.2% 9.5% 4.8% 4.7% 91.5% X
Arizona 3 D+13 Raul Grijalva D 114,650 64,868 63.9% 36.1% 27.7% 29.5% -1.8% 84.8% X
Arizona 4 R+21 Paul Gosar R 84,521 188,842 30.5% 68.2% -37.7% -39.4% 1.7% 91.1% X
Arizona 5 R+15 Andy Biggs R 127,027 186,037 40.6% @ 59.4% -18.8% -20.5% 1.7% 91.7% X
Arizona 6 R+9 David Schweikert R 140,559 173,140 44.8% 55.2% -10.4% -9.8% -0.6% 91.2% X
Arizona 7 D+23 Ruben Gallego D 113,044 301 85.6% 0.2% 85.4% 48.3% N/A 79.0% X
Arizona 8 R+13 Debbie Lesko R 135,569 168,835 44.5% 55.5% -10.9% -20.8% 9.9% 91.5% X
Arizona 9 D+4 Greg Stanton D 159,583 101,662 61.1% 38.9% 22.2% 15.9% 6.3% 90.0% X
Arkansas 1 R+17 Rick Crawford R 57,907 138,757 28.8% 68.9% -40.2% -34.8% -5.4% 77.2% X
Arkansas 2 R+7 French Hill R 116,135 132,125 45.8% 52.1% -6.3% -10.7% 4.4% 82.6% X
Arkansas 3 R+19 Steve Womack R 74,952 148,717 32.6% 64.7% -32.1% -31.4% -0.7% 78.6% X
Arkansas 4 R+17 Bruce Westerman R 63,984 136,740 31.2% 66.7% -35.5% -32.8% -2.7% 75.7% X
California 1 R+11 Doug LaMalfa R 131,506 160,006 451% 54.9% -9.8% -19.4% 9.6% 91.6%
California 2 D+22 Jared Huffman D 243,051 72,541 77.0% 23.0% 54.0% 45.2% 8.8% 90.5%
California 3 D+5 John Garamendi D 132,983 96,106 58.0% 42.0% 16.1% 12.5% 3.6% 86.8%
California 4 R+10 Tom McClintock R 156,253 184,401 45.9% 54.1% -8.3% -14.5% 6.2% 94.6%
California 5 D+21 Mike Thompson D 203,012 0 79.0% 0.0% 79.0% 44.6% N/A 83.8%
California 6 D+21 Doris Matsui D 201,939 0 100.0% 0.0% 100.0% 44.0% N/A 81.4%
California 7 D+3 Ami Bera D 155,016 126,601 55.0% @ 45.0% 10.1% 11.2% -1.1% 91.0%
California 8 R+9 Paul Cook R 0 170,785 0.0% 100.0% -100.0% -15.1% N/A 73.3%
California 9 D+8 Jerry McNerney D 113,240 87,263 56.5% 43.5% 13.0% 18.2% -5.2% 82.4%

s
)y

Spot the untidiness

But also for less good reasons

& More than one header row

A B [D E F G H | J K L M N “«» & Q

2018 Cook Other Dem 2016 Clinton Swing vs. Raw Votes -
CD# PVIScore 2018 Winner Party Dem Votes GOP Votes Votes Dem % GOP % Other % Margin Margin 2016 Prez vs.2016 Final? @ Mixe d data t.y.p eS in S Ome

New House Breakdown: 235D, 199R, D 60,619,428 50,896,244 53.4% 44.8% 8.6% 2.1% 6.5% 83.3%

Compiled by: David Wasserman & Ally Flinn, Cook Political Report. @Redistrict/@CookPolitical. /talics denotes freshman, Bold denotes party change.

Alabama 1 R+15 Bradley Byrne R 89,226 153,228 36.8% 63.2% -26.4% -29.2% 2.8% 79.3% X 1

Alabama 2 R+16 Martha Roby R 86,931 138,879 38.4% 61.4% -23.0% -31.7% 8.7% 78.7% X Co umnS
Alabama 3 R+16 Mike Rogers R 83,996 147,770 36.2% 63.7% -27.5% -33.0% 5.5% 79.6% X

Alabama 4 R+30 Robert Aderholt R 46,492 184,255 201% 79.8% -59.6% -62.5% 2.9% 78.9% X o0

Alabama 5 R+18 Mo Brooks R 101,388 159,063 38.9% 61.0% -22.1% -32.9% 10.8% 82.8% X B C O].O r and typ O g raphy U.S e d
Alabama 6 R+26 Gary Palmer R 85,644 192,542 30.8% 69.2% -38.4% -43.8% 5.4% 82.8% X

Alabama 7 D+20 Terri Sewell D 185,010 0 97.8% 0.0% 97.8% 41.2% N/A 64.2% X o 3
Nema® A me Owvens n s | e aee | aime | o wme to encode variables and their
Arizona 1 R+2 Tom O'Halleran D 143,240 122,784 53.8% 46.1% 7.7% -1.1% 8.8% 92.0% X

Arizona 2 R+1 Ann Kirkpatrick D 161,000 133,102 54.7% 45.2% 9.5% 4.8% 4.7% 91.5% X Value S
Arizona 3 D+13 Raul Grijalva D 114,650 64,868 63.9% 36.1% 27.7% 29.5% -1.8% 84.8% X

Arizona 4 R+21 Paul Gosar R 84,521 188,842 30.5% 68.2% -37.7% -39.4% 1.7% 91.1% X

Arizona 5 R+15 Andy Biggs R 127,027 186,037 40.6% 59.4% -18.8% -20.5% 1.7% 91.7% X

Arizona 6 R+9 David Schweikert R 140,559 173,140 44.8% 55.2% -10.4% -9.8% -0.6% 91.2% X

Arizona 7 D+23 Ruben Gallego D 113,044 301 85.6% 0.2% 85.4% 48.3% N/A 79.0% X

Arizona 8 R+13 Debbie Lesko R 135,569 168,835 445% 55.5% -10.9% -20.8% 9.9% 91.5% X

Arizona 9 D+4 Greg Stanton D 159,583 101,662 61.1% 38.9% 22.2% 15.9% 6.3% 90.0% X

Arkansas 1 R+17 Rick Crawford R 57,907 138,757 28.8% 68.9% -40.2% -34.8% -5.4% 77.2% X

Arkansas 2 R+7 French Hill R 116,135 132,125 45.8% 52.1% -6.3% -10.7% 4.4% 82.6% X

Arkansas 3 R+19 Steve Womack R 74,952 148,717 32.6% 64.7% -32.1% -31.4% -0.7% 78.6% X

Arkansas 4 R+17 Bruce Westerman R 63,984 136,740 31.2% 66.7% -35.5% -32.8% -2.7% 75.7% X

California 1 R+11 Doug LaMalfa R 131,506 160,006 45.1% 54.9% -9.8% -19.4% 9.6% 91.6%

California 2 D+22 Jared Huffman D 243,051 72,541 77.0% 23.0% 54.0% 45.2% 8.8% 90.5%

California 3 D+5 John Garamendi D 132,983 96,106 58.0% 42.0% 16.1% 12.5% 3.6% 86.8%

California 4 R+10 Tom McClintock R 156,253 184,401 459% 54.1% -8.3% -14.5% 6.2% 94.6%

California 5 D+21 Mike Thompson D 203,012 0 79.0% 0.0% 79.0% 44.6% N/A 83.8%

California 6 D+21 Doris Matsui D 201,939 0 100.0% 0.0% 100.0% 44.0% N/A 81.4%

California 7 D+3 Ami Bera D 155,016 126,601 55.0% 45.0% 10.1% 11.2% -1.1% 91.0%

California 8 R+9 Paul Cook R 0 170,785 0.0% 100.0% -100.0% -15.1% N/A 73.3%

California 9 D+8 Jerry McNerney D 113,240 87,263 56.5% 43.5% 13.0% 18.2% -5.2% 82.4%

Spot the untidiness

Fix it before you import it

Prevention is better than cure!
An excellent article by Karl Broman and Kara Woo:

Broman KW, Woo KH (2018) “Data Organization in Spreadsheets”” The American Statistician 78:2-10

THE AMERICAN STATISTICIAN lor & .
2018, VOL. 72,NO.1,2-10 e Taylor & Francis
https://doi.org/10.1080/00031305.2017.1375989 Taylor & Francis Group

8 OPEN ACCESS | #) check forupdstes

Data Organization in Spreadsheets

Karl W. Broman? and Kara H. WooP

2Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI; Information School, University of Washington,
Seattle, WA

ABSTRACT ARTICLE HISTORY
Spreadsheets are widely used software tools for data entry, storage, analysis, and visualization. Focusing on Received June 2017
the data entry and storage aspects, this article offers practical recommendations for organizing spreadsheet Revised August 2017
data to reduce errors and ease later analyses. The basic principles are: be consistent, write dates like YYYY-
MM-DD, do not leave any cells empty, put just one thing in a cell, organize the data as a single rectangle Data management; Data
(with subjects as rows and variables as columns, and with a single header row), create a data dictionary, do organization; Microsoft Excel;
not include calculations in the raw data files, do not use font color or highlighting as data, choose good Spreadsheets

names for things, make backups, use data validation to avoid data entry errors, and save the data in plain

text files.

KEYWORDS

Data organization in spreadsheets

doi:10.1080/00031305.2017.1375989

The most common operation

Pivoting from wide to long:

edu

A tibble: 366 x 11
age sex year total elem4 elem8 hs3 hs4 coll3 coll4 median
<chr> <chr> <int> <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl>

1 25-34 Male 2016 21845 116 468 1427 6386 6015 7432 NA
2 25-34 Male 2015 21427 166 488 1584 6198 5920 7071 NA
3 25-34 Male 2014 21217 151 512 1611 6323 5910 6710 NA
4 25-34 Male 2013 20816 161 582 1747 6058 5749 6519 NA
5 25-34 Male 2012 20464 161 579 1707 6127 5619 6270 NA
6 25-34 Male 2011 20985 190 657 1791 6444 5750 6151 NA
7 25-34 Male 2010 20689 186 641 1866 6458 5587 5951 NA
8 25-34 Male 2009 20440 184 695 1806 6495 5508 5752 NA
9 25-34 Male 2008 20210 172 714 1874 6356 5277 5816 NA
10 25-34 Male 2007 20024 246 757 1930 6361 5137 5593 NA

i 356 more rows

Here, a “Level of Schooling Attained” variable is spread across the
columns, from elem4 to col1l4. We need a key column called “education”
with the various levels of schooling, and a corresponding value column
containing the counts.

Wide to long with

We’re going to put the columns elem4 :coll4 into a new column,
creating a new categorical measure named education. The numbers
currently under each column will become a new value column
corresponding to that level of education.

pivot_longer(elem4:coll4, names_to = "education")

edu D
A tibble: 2,196 x 7
age sex year
<chr> <chr> <int>
1 25-34 Male 2016
2 25-34 Male 2016
3 25-34 Male 2016
4 25-34 Male 2016
5 25-34 Male 2016
6 25-34 Male 2016
7 25-34 Male 2015
8 25-34 Male 2015
9 25-34 Male 2015
10 25-34 Male 2015

i 2,186 more rows

total median

<int>
21845
21845
21845
21845
21845
21845
21427
21427
21427
21427

<dbl>
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

education value

<chr>
elem4
elem8
hs3
hs4
coll3
colls
elems
elem8
hs3
hs4

<dbl>
116
468
1427
6386
6015
7432
166
488
1584
6198

Wide to long with

We can name the value column to whatever we like. Here it’s a number of
people.

edu D
pivot_longer (elemé4:collé,

names_to = "education",
values_to = "n")

A tibble: 2,196 x 7

age sex year total median education n

<chr> <chr> <int> <int> <dbl> <chr> <dbl>
1 25-34 Male 2016 21845 NA elemé4 116
2 25-34 Male 2016 21845 NA elem8 468
3 25-34 Male 2016 21845 NA hs3 1427
4 25-34 Male 2016 21845 NA hsé4 6386
5 25-34 Male 2016 21845 NA coll3 6015
6 25-34 Male 2016 21845 NA collé4 7432
7 25-34 Male 2015 21427 NA elemé4 166
8 25-34 Male 2015 21427 NA elem8 488
9 25-34 Male 2015 21427 NA hs3 1584
10 25-34 Male 2015 21427 NA hsé4 6198

i 2,186 more rows

How to get your own data
into R

Reading in CSV files

Base Rhas read.csv ()
Corresponding tidyverse “underscored” version: read_csv ().

It is pickier and more talkative than the Base R version. Use it instead.

Where’s my data? Using

If we’re loading a file, it’s coming from somewhere.

If it’s a file on our hard drive somewhere, we will need to interact with the file system. We should try to do this
in a way that avoids absolute file paths.

df <« read_csv("/Users/kjhealy/Documents/data/misc/project/data/mydata.csv")

We should also do it in a way that is platform independent.

This makes it easier to share your work, move it around, etc. Projects should be self-contained.

Where’s my data? Using

The here package, and here () function builds paths relative to the top
level of your R project.

[1] "/Users/kjhealy/Documents/courses/vsd"

Where’s the data? Using

This seminar’s files all live in an RStudio project. It looks like this:

/Users/kjhealy/Documents/courses/vsd
— 00_dummy_files
— R

— README . md

— README.qgmd

— _extensions
— _freeze

— _quarto.yml
— _site

— _targets

— _targets.R

— _variables.yml
— about

— assignment

— content

— data

— deploy.sh

— example

— files

— grades

— html

— images

— index.html

— index.gmd

— merm.txt

— projects

— renv

I want to load files from the data folder, but I also want you to be able to
load them. I'm writing this from somewhere deep in the slides folder,

Taadh coana onemesdh e a B aea s

Where’s the data? Using

Load the file relative to the path from the top of the project, without separators, etc
organs <« read_csv(file = here("files", "data", "organdonation.csv"))

Where’s the data? Using

organs

roads <dbl>,

A tibble: 238 x 21
country vyear donors
<chr> <dbl> <dbl> <dbl>
1 Austra.. NA NA 17065
2 Austra.. 1991 12.1 17284
3 Austra.. 1992 12.4 17495
4 Austra.. 1993 12.5 17667
5 Austra.. 1994 10.2 17855
6 Austra.. 1995 10.2 18072
7 Austra.. 1996 10.6 18311
8 Austra.. 1997 10.3 18518
9 Austra.. 1998 10.5 18711
10 Austra.. 1999 8.67 18926
i 228 more rows
i 11 more variables:
#
#

And there it is.

000000000000

pop pop.dens

gdp gdp.lag health health.lag pubhealth
<dbl>

<dbl>
16774
17171
17914
18883
19849
21079
21923
22961
24148
25445

<dbl>
16591
16774
17171
17914
18883
19849
21079
21923
22961
24148

cerebvas <dbl>,

<dbl>
1300
1379
1455
1540
1626
1737
1846
1948
2077
2231

<dbl>
1224
1300
1379
1455
1540
1626
1737
1846
1948
2077

assault <dbl>,
external <dbl>, txp.pop <dbl>, world <chr>, opt <chr>, consent.law <chr>,
consent.practice <chr>, consistent <chr>, ccode <chr>

4

oON U U1 U Ul Ul Ul U1

.8

~OoONOTU ™~

has variants

read_csv /() Field separator is a comma: ,

organs « read_csv(file = here("files", "data", "organdonation.csv"))

read_csv2() Field separator is a semicolon: ;

my_data < read_csv2(file = here("data", "my_euro_file.csv))

Both are special cases of read_delim()

Other species are also catered to

read_tsv() Tab separated.
read_fwf () Fixed-width files.
read_log() Log files (i.e. computer log files).

read_lines() Justread in lines, without trying to parse them.

Also often useful...

read_table()

For data that’s separated by one (or more) columns of space.

And for foreign file formats...

The haven package provides

read_dta() Stata
read_spss() SPSS
read_sas() SAS
read_xpt () SAS Transport

Make these functions available with 1ibrary (haven)

You can read files remotely, too

You can give these functions local files, or they can also be pointed at URLs.

Compressed files (. zip, . tar.gz) will be automatically uncompressed.

(Be careful what you download from remote locations!)

organ_remote

gdp gdp.lag health health.lag pubhealth
<dbl>

<dbl>
16774
17171
17914
18883
19849
21079
21923
22961
24148
25445

<dbl>
16591
16774
17171
17914
18883
19849
21079
21923
22961
24148

cerebvas <dbl>,
external <dbl>, txp.pop <dbl>, world <chr>, opt <chr>, consent.law <chr>,

organ_remote <« read_csv("http://kjhealy.co/organdonation.csv")

1300
1379
1455
1540
1626
1737
1846
1948
2077
2231

assault <dbl>,

A tibble: 238 x 21
country vyear donors pop pop.dens
<chr> <dbl> <dbl> <dbl> <dbl>
1 Austra.. NA NA 17065 0.220
2 Austra.. 1991 12.1 17284 0.223
3 Austra.. 1992 12.4 17495 0.226
4 Austra.. 1993 12.5 17667 0.228
5 Austra.. 1994 10.2 17855 0.231
6 Austra.. 1995 10.2 18072 0.233
7 Austra.. 1996 10.6 18311 0.237
8 Austra.. 1997 10.3 18518 0.239
9 Austra.. 1998 10.5 18711 0.242
10 Austra.. 1999 8.67 18926 0.244
i 228 more rows
11 more variables: roads <dbl>,
#
consent.practice <chr>, consistent <chr>, ccode <chr>

<dbl>

1224
1300
1379
1455
1540
1626
1737
1846
1948
2077

~

oON U1 U1 U1l U1 1
~OoONOCUS~PD PP~

A Plot’s Components

What we need our code to make

Data represented by visual elements;

A Gapminder Plot , :
Continent like) , color, and size;
Population (m)

e o

. 36-100

I . >100

—

Each measured on some scale;

Each scale with a labeled guide;

With the plot itself also titled and labeled.

Life Expectancy

log GDP

How does

ggplot
do this?

ggplot’s flow of action

Here’s the whole thing, start to finish

| 1.Tidy Data

> |

2.Map the Aesthetics

Rig

3. Pick a Geom

| [I> [4FixScales and Co-Ordinate System | [> |

5. Add Labels and Adjust Guides

| > |

6. Add or Adjust Themes

p < ggplot(data = gapminder, ...
gip lifexp pop
340 65 3l Euro
221 51 200 | Amer
909 81 80 | FEuno
126 40 20 Asia

continent

p < ggplot(data = gapminder,

mapping = aes(x = gdp,
y = lifexp,
size = pop,
color = continent))

X-axis y-axis size color
willrepresent willrepresent willrepresent will represent

gdp lifexp pop continent
n RR un Furn

1.Get the datain the right shape.
Thisis usually long format.

Flow of action

2. Decide how your variables will be
represented by things you can see.

p + geom_point()

O
o ©

p + coord_cartesian() +
scale_x_log10()

X

p

Life Expectancy

+ labs(x = “log GDP”,
y = “Life Expectancy”,
title = “A Gapminder Plot”)

A Gapminder Plot

ol
r log GDP

p + theme_minimal()

AGapminder Plot

log GDP

Life Expectancy

3. Decide what kind of plot, or series of
plots, you want to draw.

4, Adjust scales and their markings.
Not just xand y but also color, size, etc,

5. Label your plot and adjust how the
guides are displayed.

6. Style or adjust plot elements that are
not directly representing your data.

We'll go through 1t step by step

| 1.Tidy Data

> |

2.Map the Aesthetics

Rig

3. Pick a Geom

| [I> [4FixScales and Co-Ordinate System | [> |

5. Add Labels and Adjust Guides

| > |

6. Add or Adjust Themes

p < ggplot(data = gapminder, ...
gip lifexp pop
340 65 3l Euro
221 51 200 | Amer
909 81 80 | FEuno
126 40 20 Asia

continent

p < ggplot(data = gapminder,

mapping = aes(x = gdp,
y = lifexp,
size = pop,
color = continent))

X-axis y-axis size color
willrepresent willrepresent willrepresent will represent

gdp lifexp pop continent
n RR un Furn

1.Get the datain the right shape.
Thisis usually long format.

Flow of action

2. Decide how your variables will be
represented by things you can see.

p + geom_point()

O
o ©

p + coord_cartesian() +
scale_x_log10()

X

p

Life Expectancy

+ labs(x = “log GDP”,
y = “Life Expectancy”,
title = “A Gapminder Plot”)

A Gapminder Plot

ol
r log GDP

p + theme_minimal()

AGapminder Plot

log GDP

Life Expectancy

3. Decide what kind of plot, or series of
plots, you want to draw.

4, Adjust scales and their markings.
Not just xand y but also color, size, etc,

5. Label your plot and adjust how the
guides are displayed.

6. Style or adjust plot elements that are
not directly representing your data.

What we start with

’s flow of action

lifexp nop continent

’s flow of action

A Gapminder Plot
Continent

Population (m)

. (@ o035)
. 36-100

Life Expectancy

log GDP

Where we're going

’s flow of action

1. Tidy Data
p < ggplot(data = gapminder, ...
gdp lifexp pop continent
340 6o 3l Euro
221 bl 200 Amer
909 81 80 Euro
126 40 20 Asia

1. Get the data in the right shape.
This is usually long format.

Core steps

>

2.Map the Aesthetics

p < ggplot(data = gapminder,
mapping = aes(x = gdp,
y = lifexp,
size = pop,
color = continent))

x-axis y-axis size color
will represent will represent will represent will represent

gdp lifexp pop continent

2An R 91 Furn

2. Decide how your variables will be

represented by things you can see.

>

3. Pick a Geom

p + geom_point()

o O

J. Decide what kind of plot, or series of
plots, you want to draw.

’s flow of action

> | AFixScales and Co-Ordinate System | ||~ | 5.AddLabelsand Adjust Guides | || > B. Add or Adjust Themes
p + coord_cartesian() + p + labs(x = “log GDP”, p + theme_minimal()
scale_x_log10() y = “Life Expectancy”,

title = “A Gapminder Plot”)

A Gapminder Plot A Gapminder Plot

uro ‘ uro

mer \mer

Q @ o3 ‘ Q ®
‘ . 36-100 . . 36-100
r . >100 .

Life Expectancy

~
Life Expectancy

" log GDP log GDP
4. Adjust scales and their markings. b. Label your plot and adjust how the B. Style or adjust plot elements that are
Notjustxand y but also color, size, efc, guides are displayed. not directly representing your data.

Optional steps

’s flow of action;

1. Tidy Data >

p < ggplot(data = gapminder, ...

gdp lifexp pop confinent
340 6o 3l Euro
221 ol 200 | Amer
909 81 80 Euro

126 40 20 Asia

1. Get the datain the right shape.
This is usually long format.

Tidy data

Aesthetic mappings

’s flow of action;

2. Map the Aesthetics

p < ggplot(data = gapminder,
mapping = aes(x = gdp,
y = lifexp,
size = pop,
color = continent))

y-axis size color
will represent willrepresent will represent

gdp lifexp pop continent

X-axis
will represent

21 RG

91 Furn

2. Decide how your variables will be
represented by things you can see.

>

’s flow of action;

3.Pick a Geom

p + geom_point()

o O

3. Decide what kind of plot, or series of
plots, you want fo draw.

Geom

Let’s go piece by
pilece

Start with the data

A tibble: 1,704 x 6

country continent vyear lifeExp pop gdpPercap

<fct> <fct> <int> <dbl> <int> <dbl>
1 Afghanistan Asia 1952 28.8 8425333 779.
2 Afghanistan Asia 1957 30.3 9240934 821.
3 Afghanistan Asia 1962 32.0 10267083 853.
4 Afghanistan Asia 1967 34.0 11537966 836.
5 Afghanistan Asia 1972 36.1 13079460 740.
6 Afghanistan Asia 1977 38.4 14880372 786.
7 Afghanistan Asia 1982 39.9 12881816 978.
8 Afghanistan Asia 1987 40.8 13867957 852.
9 Afghanistan Asia 1992 41.7 16317921 649.
@ Afghanistan Asia 1997 41.8 22227415 635.

T -

i 1,694 more rows

dim(gapminder)

[1] 1704 6

Create a plot object

Data is the gapminder tibble.

p < ggplot(data = gapminder)

Map variables to aesthetics

Tell ggplot the variables you want represented by visual elements on the
plot

p « ggplot(data = gapminder,
mapping = aes(x = gdpPercap,

y = lifeExp))

Map variables to aesthetics

The mapping = aes(...) calllinks variables to things you will see on
the plot.

x and y represent the quantities determining position on the x and y axes.

Other aesthetic mappings can include, e.g.,,color, shape,size, and
fill.

ngs do not directly specify the
articular, e.g., colors, shapes, or
ine styles that will appear on the
plot. Rather, they establish
1n the data will be
represented by
on the plot.

has data and mappings but no geom

80+

60+

lifeExp

40

0 30000 60000 90000
gdpPercap

This empty plot has no geoms.

Add a geom

p + geom_point()

80+

601

lifeExp

401

0 30000 60000 90000
gdpPercap

A scatterplot of Life Expectancy vs GDP

Try a different geom

p + geom_smooth()

80+
70+
0O,
<
W]
& 60
501
401, : : ;
0 30000 60000 90000
gdpPercap

A scatterplot of Life Expectancy vs GDP

Build your plots layer by layer

p < ggplot(data = gapminder,
= aes(x = gdpPercap,

mapping =
y=1lifeExp))

p + geom_smooth()

80+
701
a,
o]
k]
& 60-
501
401 : : :
0 30000 60000 90000
gdpPercap

Life Expectancy vs GDP, using a smoother.

This process 1s additive

p < ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y=1lifeExp))

p + geom_point() + geom_smooth()

80-
60-
[@F
]
(W]
e
40-
0 30000 60000 90000
gdpPercap

Life Expectancy vs GDP, using a smoother.

This process 1s additive

p < ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y=1lifeExp))

This process 1s additive

p < ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y=1lifeExp))

p + geom_smooth()

This process 1s additive

p < ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y=1lifeExp))
p + geom_smooth() +
geom_point ()

Functions take

p < ggplot(data = gapminder,
mapping = aes(x gdpPercap,
y = lifeExp))

p + geom_point() +
geom_smooth(method = "1m")

150

lifeExp

100

50

90000

30000

60000
gdpPercap

Keep Layering

p < ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y=1ifeExp))

Keep Layering

p < ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y=1ifeExp))
p + geom_point()

Keep Layering

p < ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y=1ifeExp))
p + geom_point() +
geom_smooth(method = "1m")

Keep Layering

p < ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y=1ifeExp))
p + geom_point() +
geom_smooth(method = "1m") +
scale_x_log1@()

Fix the labels

p < ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y=1lifeExp))

Fix the labels

p < ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y=1lifeExp))
p + geom_point()

Fix the labels

p < ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y=1lifeExp))
p + geom_point() +
geom_smooth(method = "1m")

Fix the labels

p < ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y=1lifeExp))
p + geom_point() +
geom_smooth(method = "1m") +
scale_x_log1@(labels = scales::label_dollar

Add labels, title, and caption

p < ggplot(data = gapminder, Economic Growth and Life Expectancy

mapping = aes(x = gdpPercap, .
y = lifeExp)) Data points are country-years

p + geom_point() +
geom_smooth(method = "1m") +
scale_x_log1@(labels = scales::label_dollar
labs(x = "GDP Per Capita",
y = "Life Expectancy in Years",
title = "Economic Growth and Life Expe
subtitle = "Data points are country-ye
caption = "Source: Gapminder.")

o
o

o
(@)

S
o

Life Expectancy in Years

$1,000 $10,000 $100,000
GDP Per Capita

Source: Gapminder.

VS
Setting
your plot’s
aesthetics

“Can I change the color of the points?”

p < ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y = lifeExp,
color = "purple"))

Put in an object for convenience

p_out < p + geom_point() +
geom_smooth(method = "loess") +
scale_x_1og10()

What has gone wrong here?

colour purple

80+

lifeExp

401

1e+03 1le+04 1e+05
gdpPercap

Try again

p < ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y lifeExp))

Put in an object for convenience

p_out < p + geom_point(color = "purple") +
geom_smooth(method = "loess") +
scale_x_log1@()

5
©
o)
3
B
£~
-

1e+05

1e+04

gdpPercap

1e+03

80+

O-

©
dx3aym

40+

Geoms can take many arguments

Here we color,size,and alpha. Meanwhile x and y are mapped.

We also give non-default values to some other arguments

p < ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y = lifeExp))
p_out < p + geom_point(alpha = 0.3) +

geom_smooth(color = "orange",
se = FALSE,
size = 8,
method = "1m") +
scale_x_1log10()

Geoms can take many arguments

o %Oo
~ %gj 8}0 W% l
® (©] Q@ 2 OCO @ [a5g o OO OO (0]
%60_ ° o ©_0 ® po® o @%ﬁof > O\,éoC‘)%oo o %0 °
®e O“boo ® @ P 0o 8@ © ©o e o ° ~
e P v oS <Lt = 0
2 Ooé% Q“S’)O@ b X SOOO o ®
cﬂ ® & o gggg go e & o Q@ o ®
@ﬁg d% ® g o e o° o
— o o & o‘g . o © e o © e o e 0
R ®OO$‘£P s © G’WOO&OO o © %o .
o o o0 €28 P o dzg%O S o ° ©
® s’ &8s o ©®o .
4 J% b &%o of @ °
40-] % %O 0080@. 5} &
S 2 it ®e
]
e®% Oo®0 C@%o 8 g@ °] () -
. ® pwad % » @o © o
o o
0083 OOO o
o

1e+03 1e+04 1e+05
gdpPercap

for overplotting

p < ggplot(data = gapminder, Economic Growth and Life Expectancy

mapping = aes(x = gdpPercap, .
y = lifeExp)) Data points are country-years

p + geom_point(alpha = 0.3) +
geom_smooth(method = "1m") +
scale_x_log1@(labels = scales::label_dollar
labs(x = "GDP Per Capita",
y = "Life Expectancy in Years",
title = "Economic Growth and Life Expe
subtitle = "Data points are country-ye
caption = "Source: Gapminder.")

o
o

o
(@)

N
o

Life Expectancy in Years

$1,000 $10,000 $100,000
GDP Per Capita

Source: Gapminder.

Map or Set values
per geom

Geoms can take their own mappings

p < ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y = lifeExp,
color = continent,
fill = continent))

Geoms can take their own mappings

p < ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y = lifeExp,
color = continent,
fill = continent))
p + geom_point()

Geoms can take their own mappings

p < ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y = lifeExp,
color = continent,
fill = continent))
p + geom_point() +
geom_smooth(method = "loess")

Geoms can take their own mappings

p < ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y = lifeExp,
color = continent,
fill = continent))
p + geom_point() +
geom_smooth(method = "loess") +
scale_x_log1@(labels = scales::label_dollar())

Geoms can take their own mappings

p < ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y = lifeExp))

Geoms can take their own mappings

p < ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y = lifeExp))
p + geom_point(mapping = aes(color = continent))

Geoms can take their own mappings

p < ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y = lifeExp))
p + geom_point(mapping aes(color = continent)) +
geom_smooth(method "loess")

Geoms can take their own mappings

p < ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y = lifeExp))
p + geom_point(mapping aes(color = continent)) +
geom_smooth(method "loess") +
scale_x_log1@(labels = scales::label_dollar())

Geoms can take their own mappings

p < ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y = lifeExp))
p + geom_point(mapping aes(color = continent)) +
geom_smooth(method "loess") +
scale_x_log1@(labels = scales::label_dollar())

Pay attention to
which scales and
guldes are drawn,

and why

Guides and scales reflect

mappings

mapping = aes(color =
continent, fill = continent)

continent
Africa
Americas
Asia
Europe

Oceania

Guides and scales reflect

mappings

mapping = aes(color = continent, fill = mapping = aes(color = continent)
continent)
continent continent
Africa Africa
Americas Americas
Asia Asia
Europe Europe

Oceania Oceania

Remember: Every
mapped variable
has a scale

Saving your work

Save the most recent plot
ggsave(filename = "figures/my_figure.png")

Use here() for more robust file paths
ggsave(filename = here("figures", "my_figure.png"))

A plot object
p_out <« p + geom_point(mapping = aes(color = log(pop))) +
scale_x_log10()

ggsave(filename = here("figures", "lifexp_vs_gdp_gradient.pdf"),
plot = p_out)

ggsave (here("figures", "lifexp_vs_gdp_gradient.png"),
plot = p_out,
width = 8,
height = 5)

In code chunks

Set options in any chunk:

Or for the whole document:

title: "My Document"
format:
html:
fig-width: 8
fig-height: 6
pdf:
fig-width: 7
fig-height: 5

ggplot implements a
grammar of graphics

A grammar of graphics

The grammar is a set of rules for how to .kjh-lblueproduce graphics from

data, by mapping data to or representing it by geometric (like points
and lines) that have aesthetic (like position, color, size, and

shape), together with further rules for transforming data if needed, for

adjusting scales and their guides, and for projecting results onto some
coordinate system.

Grouped data and the group
aesthetic

Try to make a lineplot

p < ggplot(data = gapminder,
mapping = aes(x = year,
y = gdpPercap))

Try to make a lineplot

p < ggplot(data = gapminder,
mapping = aes(x = year,
y = gdpPercap)) +

geom_line()

Try to make a lineplot

p < ggplot(data = gapminder,
mapping = aes(x = year,
y = gdpPercap)) +
geom_line()

Try to make a lineplot

p < ggplot(data = gapminder,
mapping = aes(x = year,
y = gdpPercap))

Try to make a lineplot

p < ggplot(data = gapminder,
mapping = aes(x = year,
y = gdpPercap)) +
geom_line(mapping = aes(group = country))

Try to make a lineplot

p < ggplot(data = gapminder,
mapping = aes(x = year,
y = gdpPercap)) +
geom_line(mapping = aes(group = country))

Try to make a lineplot

p < ggplot(data = gapminder,
mapping = aes(x = year,
y = gdpPercap)) +
geom_line(mapping = aes(group = country))

Facet the plot

country continent vyear lifeExp pop
gdpPercap
<fct> <fct> <int> <dbl> <int>
<dbl>
1 Afghanistan Asia 1952 28.8 8425333
779.
2 Afghanistan Asia 1957 30.3 9240934
821.
3 Afghanistan Asia 1962 32.0 10267083
853.
4 Afghanistan Asia 1967 34.0 11537966
836.
5 Afghanistan Asia 1972 36.1 13079460
740.
6 Afghanistan Asia 1977 38.4 14880372
786.
7 Afghanistan Asia 1982 39.9 12881816
978.

Facet the plot

gapminder D
ggplot (mapping =
aes(x = year,
y = gdpPercap))

Facet the plot

gapminder D
ggplot (mapping
aes(x = year,
y = gdpPercap)) +
geom_line(mapping = aes(group = country))

Facet the plot

gapminder D
ggplot (mapping
aes(x = year,
y = gdpPercap)) +
geom_line(mapping = aes(group = country)) +
facet_wrap(~ continent)

Faceting is very powerful

A facet is not a geom; it’s a way of arranging repeated geoms by some
additional variable

Facets use R’s “formula” syntax: facet_wrap(~ continent)

Read the ~ as “on” or “by”

You can also use this syntax: facet_wrap(vars(continent))

This is newer, and consistent with other ways of referring to variables
within tidyverse functions.

Facets 1n action

p < ggplot(data = gapminder,
mapping = aes(x = year,
y = gdpPercap))

p_out < p + geom_line(color="gray70",
mapping=aes(group = country)) +
geom_smooth(size = 1.1,
method = "loess",
se = FALSE) +
scale_y_log1@(labels=scales::label_dollar()) +
facet_wrap(~ continent, ncol = 5) +
labs(x = "Year",
y = "log GDP per capita",
title = "GDP per capita on Five Continents",
caption = "Data: Gapminder")

GDP per capita on Five Continents

Oceania

Europe

Asia

Americas

Africa

$100,000

edes gad Jgo 601

1950 1960 1970 1980 1990 2000 1950 1960 1970 1980 1990 2000 1950 1960 1970 1980 1990 2000 1950 1960 1970 1980 1990 2000 1950 1960 1970 1980 1990 2000

Year

Data: Gapminder

A more polished faceted plot.

One-variable summaries

OV OoONODULITAEAEWN -

HoHHHHHF-

A tibble:

PID

<int>

561
562
563
564
565
566
567
568
569
570

ALEXAN...

CALHOUN
CARROLL

CHAMPA...
i 427 more rows
19 more variables:
percblack <dbl>,

437 x 28
state

<chr> <dbl>

IL
IL
IL
IL
IL
IL
IL
IL
IL
IL

(]

O 000000000

.052
.014
.022
.017
.018
.05

.017
.027
.024
.058

<int>
66090
10626
14991
30806

5836
35688

5322
16805
13437

173025

County-level census data for Midwestern U.S. Counties

759

681.
1812.
324.
714,
313.
622.
560.
2983.

<int>
63917

7054
14477
29344

5264
35157

5298
16519
13384

146506

popasian <int>, popother <int>, percwhite <dbl>,
percamerindan <dbl>, percasian <dbl>,
popadults <int>, perchsd <dbl>, percollege <dbl>, percprof <dbl>,

poppovertyknown <int>, percpovertyknown <dbl>, percbelowpoverty <dbl>,

percchildbelowpovert <dbl>, percadultpoverty <dbl>,

percother <dbl>,

area poptotal popdensity popwhite popblack popamerindian
<dbl>
1271.

<int>

98
19
35
46
14
65

8
30

8

331

functions behind the scenes

p < ggplot(data = midwest,

“stat_bin() " using "bins = 30°. Pick better
mapping = aes(x = area)) value with “binwidth’.
p + geom_histogram()

754
= 50-
i}
o
(&)
925
O_ — -
0.00 0.03 0.06 0.09
area

Here the default stat function for this geom has to make a choice. It is

functions behind the scenes

p < ggplot(data = midwest,

mapping = aes(x = area))

p + geom_histogram(bins = 10)

150

=100
=)
o
QO
50-
O.
0.00 0.03 0.06 0.09
area

We can choose either the number of bins orthe binwidth

Compare two distributions

Two state codes
oh_wi « c("OH", "WI") state OH WI
midwest D
filter(state %in% oh_wi) D
ggplot (mapping = aes(x =

= percollege,
fill = state)) +

geom_histogram(alpha = 0.5, 104
position = "identity") =
b
o
o

5.

O-

10 20 30 40
percollege

Here we do the whole thing in a pipeline using the pipe and the dplyr verb filter () to subset rows of the
data by some condition.

Experiment with leaving the position argument out, or changing it to "dodge".

p < ggplot(data =
mapping

p + geom_density()

midwest,

aes(x

area))

0.00

0.03

0.06
area

0.09

p < ggplot(data = midwest,

mapping

p + geom_density(alpha

state IL IN[IMI[]JOH [] W
120

90+

601

density

301

O-
0.00 0.03 0.06 0.09
area

midwest D
filter(state %in% oh_wi) D state OH WI
ggplot (mapping = aes(x = area,

fill = state, 1.001
color = state)) +
geom_density(mapping = aes(y = after_stat(nde
alpha = 0.4) 0.751

ndensity
o
(@]
o

0.251

0.00

0.025 0.050 0.075
area

ndensity hereis not in our data! It’s computed. Histogram and density geoms have default statistics, but you
can ask them to do more. The after stat functions can do this work for us.

Avoid counting up,
when necessary

Sometimes no counting is needed

fate sex n percent
1 perished male 1364 62.0
2 perished female 126 5.7
3 survived male 367 16.7
4 survived female 344 15.6

Here we just have a summary table and want to plot a few numbers directly in a bar chart.

wants to count up

p < ggplot(data = titanic,
mapping = aes(x fate,

v percent, 60
fill = sex))
p + geom_bar(stat = "identity")

40+

percent

20 1

sex

female

male

perished survived

fate

By default geom_bar () tries to count up data by category. (Really it’s the stat_count () function that does
this behind the scenes.) By saying stat="1identity" we explicitly tell it not to do that. This also allows us to

use a Y mapping. Normally this would be the result of the counting up.

stacks bars by default

p < ggplot(data = titanic,
mapping = aes(x = fate,
= percent,
fill = sex))
p + geom_bar(stat = "identity",
position = "dodge")

percent

60 1

401

20 1

Sex

female

male

perished survived
fate

Position arguments adjust whether the things drawn are placed on top of one another ("'stack"), side-by-side

("dodge"), or taken as-is ("identity").

adjustment

p < ggplot(data = titanic,
mapping = aes(x = fate, Sex female male
= percent,
fill = sex))
p + geom_bar(stat = "identity",
position = "dodge") +
theme(legend.position = "top")

60 1

40

percent

20 1

perished survived
fate

The theme () function controls the styling of parts of the plot that don’t belong to its “grammatical” structure.
That is, that are not contributing to directly representing data.

For convenience, use

p < ggplot(data = titanic,
mapping = aes(x = fate, Sex female male
= percent,
fill = sex))
p + geom_col(position = "dodge") +
theme (legend.position = "top")

60 1

40

g
20 1
O -
perished survived
fate
geom_col () assumes stat = "identity" by default. It’s for when you want to directly plot a table of

values, rather than create a bar chart by summing over one varible categorized by another.

for thresholds

Data comparing U.S. average life expectancy to the rest of

4 A tibble: 57 x 5 the OECD average.

Groups: year [57] _ diff is difference in years with respect to the U.S.
year other usa diff hi_lo

<int> <dbl> <dbl> <dbl> <chr> hi_lois aflag saying whether the OECD is above or below

1 1960 68.6 69.9 1.30 Below the US.
2 1961 69.2 70.4 1.20 Below
3 1962 68.9 70.2 1.30 Below
4 1963 69.1 70 ©0.900 Below
5 1964 69.5 70.3 0.800 Below
6 1965 69.6 70.3 0.700 Below
7 1966 69.9 70.3 0.400 Below
8 1967 70.1 70.7 0.600 Below
9 1968 70.1 70.4 0.300 Below
19 1969 70.1 70.6 0.5 Below

i 47 more rows

for thresholds

p < ggplot(data = oecd_sum, geom_hline () doesn’t take any data argument. It just

mapping = aes(x ;/E_’i;' draws a horizontal line with a given y-intercept.
y = dirT,

fill = hi_lo)) x = NULL means “Don’t label the x-axis (not even with the
default value, the variable name).
p_out <« p + geom_col() +

geom_hline(yintercept = @, size = 1.2) +

guides(fill = "none") +

labs(x = NULL,
y = "Difference in Years",
title = "The U.S. Life Expectancy G
subtitle = "Difference between U.S.
OECD average life expectancies, 196
caption = "Data: OECD.")

for thresholds

The U.S. Life Expectancy Gap

Difference between U.S. and
OECD average life expectancies, 1960-2015

[EY

o

Difference in Years
N

1960 1980 2000

Data: OECD.

